//*CMZ : 2.22/09 12/07/99 18.44.02 by Rene Brun //*CMZ : 2.22/06 19/06/99 09.17.09 by Peter Malzacher //*CMZ : 2.21/06 15/02/99 09.36.40 by Rene Brun //*-- Author : Pasha Murat, Peter Malzacher 12/02/99 //______________________________________________________________________________ //*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== * //*-* The Physics Vector package consists of five classes: * //*-* - TVector2 * //*-* - TVector3 * //*-* - TRotation * //*-* - TLorentzVector * //*-* - TLorentzRotation * //*-* It is a combination of CLHEPs Vector package written by * //*-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * //*-* and a ROOT package written by Pasha Murat. * //*-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* // /*
TVector3 v1; //
v1 = (0,0,0)
TVector3 v2(1); // v2 = (1,0,0)
TVector3 v3(1,2,3); // v3 = (1,2,3)
TVector3 v4(v2); // v4 = v2
It is also possible (but not recommended) to initialize a TVector3 with a Double_t or Float_t C array.
You can get the basic components either by name or by index using operator():
xx = v1.X(); or xx =
v1(0);
yy = v1.Y();
yy = v1(1);
zz = v1.Z();
zz = v1(2);
The memberfunctions SetX(), SetY(), SetZ() and SetXYZ() allow to set the components:
v1.SetX(1.); v1.SetY(2.); v1.SetZ(3.);
v1.SetXYZ(1.,2.,3.);
Double_t m = v.Mag(); // get magnitude
(=rho=Sqrt(x*x+y*y+z*z)))
Double_t m2 = v.Mag2(); // get magnitude squared
Double_t t = v.Theta(); // get polar angle
Double_t ct = v.CosTheta();// get cos of theta
Double_t p = v.Phi(); // get azimuth
angle
Double_t pp = v.Perp(); // get transverse component
Double_t pp2= v.Perp2(); // get transvers component
squared
It is also possible to get the transverse component with respect to another vector:
Double_t ppv1 = v.Perp(v1);
Double_t pp2v1 = v.Perp2(v1);
The pseudorapiditiy ( eta=-ln (tan (phi/2)) ) can be get by Eta()
or PseudoRapidity():
Double_t eta = v.PseudoRapidity();
There are set functions to change one of the noncartesian coordinates:
v.SetTheta(.5); // keeping rho and phi
v.SetPhi(.8); // keeping rho and theta
v.SetMag(10.); // keeping theta and phi
v.SetPerp(3.); // keeping z and phi
v3 = -v1;
v1 = v2+v3;
v1 += v3;
v1 = v1 - v3
v1 -= v3;
v1 *= 10;
v1 = 5*v2;
if(v1==v2) {...}
if(v1!=v2) {...}
TRotation m;
...
v1.transform(m);
v1 = m*v1;
v1 *= m; // Attention v1 = m*v1
transforms v1 from the rotated frame (z' parallel to direction, x' in the theta plane and y' in the xy plane as well as perpendicular to the theta plane) to the (x,y,z) frame.
*/ // // //*KEEP,TVector3,T=C++. #include "TVector3.h" //*KEEP,TRotation,T=C++. #include "TRotation.h" //*KEND. ClassImp(TVector3) TVector3::TVector3(const TVector3 & p) : fX(p.fX), fY(p.fY), fZ(p.fZ) {} TVector3::TVector3(Double_t x, Double_t y, Double_t z) : fX(x), fY(y), fZ(z) {} TVector3::TVector3(Double_t * x0) : fX(x0[0]), fY(x0[1]), fZ(x0[2]) {} TVector3::TVector3(Float_t * x0) : fX(x0[0]), fY(x0[1]), fZ(x0[2]) {} Double_t TVector3::operator () (int i) const { switch(i) { case 0: return fX; case 1: return fY; case 2: return fZ; default: Warning("operator()(i)", "bad index (%d)",i); } return 0.; } Double_t & TVector3::operator () (int i) { switch(i) { case 0: return fX; case 1: return fY; case 2: return fZ; default: Warning("operator()(i)", "bad index (%d)",i); } Double_t dummy; Double_t & rdummy = dummy; return rdummy; } TVector3 & TVector3::operator *= (const TRotation & m){ return *this = m * (*this); } TVector3 & TVector3::Transform(const TRotation & m) { return *this = m * (*this); } void TVector3::RotateX(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t yy = fY; fY = c*yy - s*fZ; fZ = s*yy + c*fZ; } void TVector3::RotateY(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t zz = fZ; fZ = c*zz - s*fX; fX = s*zz + c*fX; } void TVector3::RotateZ(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t xx = fX; fX = c*xx - s*fY; fY = s*xx + c*fY; } void TVector3::Rotate(Double_t angle, const TVector3 & axis){ TRotation trans; trans.Rotate(angle, axis); operator*=(trans); } void TVector3::RotateUz(const TVector3& NewUzVector) { // NewUzVector must be normalized ! Double_t u1 = NewUzVector.fX; Double_t u2 = NewUzVector.fY; Double_t u3 = NewUzVector.fZ; Double_t up = u1*u1 + u2*u2; if (up) { up = TMath::Sqrt(up); Double_t px = fX, py = fY, pz = fZ; fX = (u1*u3*px - u2*py + u1*up*pz)/up; fY = (u2*u3*px + u1*py + u2*up*pz)/up; fZ = (u3*u3*px - px + u3*up*pz)/up; } else if (u3 < 0.) { fX = -fX; fZ = -fZ; } // phi=0 teta=pi else {}; } Double_t TVector3::PseudoRapidity() const { Double_t m = Mag(); return 0.5*log( (m+fZ)/(m-fZ) ); } TVector3 operator + (const TVector3 & a, const TVector3 & b) { return TVector3(a.X() + b.X(), a.Y() + b.Y(), a.Z() + b.Z()); } TVector3 operator - (const TVector3 & a, const TVector3 & b) { return TVector3(a.X() - b.X(), a.Y() - b.Y(), a.Z() - b.Z()); } TVector3 operator * (const TVector3 & p, Double_t a) { return TVector3(a*p.X(), a*p.Y(), a*p.Z()); } TVector3 operator * (Double_t a, const TVector3 & p) { return TVector3(a*p.X(), a*p.Y(), a*p.Z()); } Double_t operator * (const TVector3 & a, const TVector3 & b) { return a.Dot(b); } TVector3 operator * (const TMatrix & m, const TVector3 & v ) { return TVector3( m(0,0)*v.X()+m(0,1)*v.Y()+m(0,2)*v.Z(), m(1,0)*v.X()+m(1,1)*v.Y()+m(1,2)*v.Z(), m(2,0)*v.X()+m(2,1)*v.Y()+m(2,2)*v.Z()); } //const TVector3 kXHat(1.0, 0.0, 0.0); //const TVector3 kYHat(0.0, 1.0, 0.0); //const TVector3 kZHat(0.0, 0.0, 1.0);