TMath
class description - source file - inheritance tree
private:
Double_t GamCf(Double_t a, Double_t x)
Double_t GamSer(Double_t a, Double_t x)
public:
TMath TMath()
TMath TMath(TMath&)
void ~TMath()
Short_t Abs(Short_t d)
Int_t Abs(Int_t d)
Long_t Abs(Long_t d)
Float_t Abs(Float_t d)
Double_t Abs(Double_t d)
Double_t ACos(Double_t x)
Double_t ACosH(Double_t)
Double_t ASin(Double_t x)
Double_t ASinH(Double_t)
Double_t ATan(Double_t x)
Double_t ATan2(Double_t y, Double_t x)
Double_t Atan2(Long_t x, Long_t y)
Double_t ATanH(Double_t)
Int_t BinarySearch(Int_t n, Short_t* array, Short_t value)
Int_t BinarySearch(Int_t n, Short_t** array, Short_t value)
Int_t BinarySearch(Int_t n, Int_t* array, Int_t value)
Int_t BinarySearch(Int_t n, Int_t** array, Int_t value)
Int_t BinarySearch(Int_t n, Float_t* array, Float_t value)
Int_t BinarySearch(Int_t n, Float_t** array, Float_t value)
Int_t BinarySearch(Int_t n, Double_t* array, Double_t value)
Int_t BinarySearch(Int_t n, Double_t** array, Double_t value)
Double_t Ceil(Double_t x)
TClass* Class()
Double_t Cos(Double_t x)
Double_t CosH(Double_t x)
Float_t* Cross(Float_t* v1, Float_t* v2, Float_t* out)
Double_t* Cross(Double_t* v1, Double_t* v2, Double_t* out)
Double_t E()
Double_t Erf(Double_t x)
Double_t Erfc(Double_t x)
Bool_t Even(Long_t a)
Double_t Exp(Double_t x)
Double_t Floor(Double_t x)
Double_t Gamma(Double_t z)
Double_t Gamma(Double_t a, Double_t x)
Double_t Gaus(Double_t x, Double_t mean = 0, Double_t sigma = 1)
ULong_t Hash(void* txt, Int_t ntxt)
ULong_t Hash(char* str)
Double_t Hypot(Double_t x, Double_t y)
Long_t Hypot(Long_t x, Long_t y)
virtual TClass* IsA()
Double_t Landau(Double_t x, Double_t mean = 0, Double_t sigma = 1)
Double_t LnGamma(Double_t z)
Int_t LocMax(Int_t n, Short_t* a)
Int_t LocMax(Int_t n, Int_t* a)
Int_t LocMax(Int_t n, Float_t* a)
Int_t LocMax(Int_t n, Double_t* a)
Int_t LocMin(Int_t n, Short_t* a)
Int_t LocMin(Int_t n, Int_t* a)
Int_t LocMin(Int_t n, Float_t* a)
Int_t LocMin(Int_t n, Double_t* a)
Double_t Log(Double_t x)
Double_t Log10(Double_t x)
Double_t Log2(Double_t x)
Short_t Max(Short_t a, Short_t b)
UShort_t Max(UShort_t a, UShort_t b)
Int_t Max(Int_t a, Int_t b)
UInt_t Max(UInt_t a, UInt_t b)
Long_t Max(Long_t a, Long_t b)
ULong_t Max(ULong_t a, ULong_t b)
Float_t Max(Float_t a, Float_t b)
Double_t Max(Double_t a, Double_t b)
Short_t Min(Short_t a, Short_t b)
UShort_t Min(UShort_t a, UShort_t b)
Int_t Min(Int_t a, Int_t b)
UInt_t Min(UInt_t a, UInt_t b)
Long_t Min(Long_t a, Long_t b)
ULong_t Min(ULong_t a, ULong_t b)
Float_t Min(Float_t a, Float_t b)
Double_t Min(Double_t a, Double_t b)
Long_t NextPrime(Long_t x)
Int_t Nint(Float_t x)
Int_t Nint(Double_t x)
Float_t* Normal2Plane(Float_t* v1, Float_t* v2, Float_t* v3, Float_t* normal)
Double_t* Normal2Plane(Double_t* v1, Double_t* v2, Double_t* v3, Double_t* normal)
Float_t Normalize(Float_t* v)
Double_t Normalize(Double_t* v)
Float_t NormCross(Float_t* v1, Float_t* v2, Float_t* out)
Double_t NormCross(Double_t* v1, Double_t* v2, Double_t* out)
Bool_t Odd(Long_t a)
Double_t Pi()
Double_t Power(Double_t x, Double_t y)
Double_t Prob(Double_t chi2, Int_t ndf)
Short_t Range(Short_t lb, Short_t ub, Short_t x)
Int_t Range(Int_t lb, Int_t ub, Int_t x)
Long_t Range(Long_t lb, Long_t ub, Long_t x)
ULong_t Range(ULong_t lb, ULong_t ub, ULong_t x)
Double_t Range(Double_t lb, Double_t ub, Double_t x)
virtual void ShowMembers(TMemberInspector& insp, char* parent)
Short_t Sign(Short_t a, Short_t b)
Int_t Sign(Int_t a, Int_t b)
Long_t Sign(Long_t a, Long_t b)
Float_t Sign(Float_t a, Float_t b)
Double_t Sign(Double_t a, Double_t b)
Double_t Sin(Double_t x)
void Sincos(Double_t a, Double_t* sin, Double_t* cos)
Double_t SinH(Double_t x)
void Sort(Int_t n, Short_t* a, Int_t* index, Bool_t down = kTRUE)
void Sort(Int_t n, Int_t* a, Int_t* index, Bool_t down = kTRUE)
void Sort(Int_t n, Float_t* a, Int_t* index, Bool_t down = kTRUE)
void Sort(Int_t n, Double_t* a, Int_t* index, Bool_t down = kTRUE)
Double_t Sqrt(Double_t x)
Long_t Sqrt(Long_t x)
virtual void Streamer(TBuffer& b)
Double_t Tan(Double_t x)
Double_t TanH(Double_t x)
TMath
Encapsulate math routines (i.e. provide a kind of namespace).
For the time being avoid templates.
Long_t Sqrt(Long_t x)
Double_t Hypot(Double_t x, Double_t y)
Double_t ASinH(Double_t x)
Double_t ACosH(Double_t x)
Double_t ATanH(Double_t x)
Double_t Ceil(Double_t x)
Double_t Floor(Double_t x)
Double_t Log2(Double_t x)
Double_t Atan2(Long_t y, Long_t x)
void Sincos(Double_t a, Double_t *sinp, Double_t *cosp)
Long_t NextPrime(Long_t x)
Return next prime number after x.
Int_t Nint(Float_t x)
Int_t Nint(Double_t x)
Float_t* Cross(Float_t v1[3],Float_t v2[3],Float_t out[3])
Calculate the Cross Product of two vectors
out = [v1 x v2]
Double_t* Cross(Double_t v1[3],Double_t v2[3],Double_t out[3])
Calculate the Cross Product of two vectors
out = [v1 x v2]
Double_t Erf(Double_t x)
Computation of the error function erf(x).
--- NvE 14-nov-1998 UU-SAP Utrecht
Double_t Erfc(Double_t x)
Computation of the complementary error function erfc(x).
The algorithm is based on a Chebyshev fit as denoted in
Numerical Recipes 2nd ed. on p. 214 (W.H.Press et al.).
The fractional error is always less than 1.2e-7.
--- Nve 14-nov-1998 UU-SAP Utrecht
Double_t Gamma(Double_t z)
Computation of gamma(z) for all z>0.
The algorithm is based on the article by C.Lanczos [1] as denoted in
Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
[1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
--- Nve 14-nov-1998 UU-SAP Utrecht
Double_t Gamma(Double_t a,Double_t x)
Computation of the incomplete gamma function P(a,x)
The algorithm is based on the formulas and code as denoted in
Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
--- Nve 14-nov-1998 UU-SAP Utrecht
Double_t GamCf(Double_t a,Double_t x)
Computation of the incomplete gamma function P(a,x)
via its continued fraction representation.
The algorithm is based on the formulas and code as denoted in
Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
--- Nve 14-nov-1998 UU-SAP Utrecht
Double_t GamSer(Double_t a,Double_t x)
Computation of the incomplete gamma function P(a,x)
via its series representation.
The algorithm is based on the formulas and code as denoted in
Numerical Recipes 2nd ed. on p. 210-212 (W.H.Press et al.).
--- Nve 14-nov-1998 UU-SAP Utrecht
Double_t Gaus(Double_t x, Double_t mean, Double_t sigma)
Calculate a gaussian function with mean and sigma
Double_t Landau(Double_t x, Double_t mean, Double_t sigma)
The LANDAU function with mean and sigma.
This function has been adapted from the CERNLIB routine G110 denlan.
Double_t LnGamma(Double_t z)
Computation of ln[gamma(z)] for all z>0.
The algorithm is based on the article by C.Lanczos [1] as denoted in
Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.).
[1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86.
The accuracy of the result is better than 2e-10.
--- Nve 14-nov-1998 UU-SAP Utrecht
Float_t Normalize(Float_t v[3])
Normalize a vector v in place
Return:
The norm of the original vector
Double_t Normalize(Double_t v[3])
Normalize a vector v in place
Return:
The norm of the original vector
Float_t* Normal2Plane(Float_t p1[3],Float_t p2[3],Float_t p3[3], Float_t normal[3])
Calculate a normal vector of a plane
Input:
Float_t *p1,*p2,*p3 - 3 3D points belonged the plane to define it.
Return:
Pointer to 3D normal vector (normalized)
Double_t* Normal2Plane(Double_t p1[3],Double_t p2[3],Double_t p3[3], Double_t normal[3])
Calculate a normal vector of a plane
Input:
Float_t *p1,*p2,*p3 - 3 3D points belonged the plane to define it.
Return:
Pointer to 3D normal vector (normalized)
Double_t Prob(Double_t chi2,Int_t ndf)
Computation of the probability for a certain Chi-squared (chi2)
and number of degrees of freedom (ndf).
Calculations are based on the incomplete gamma function P(a,x),
where a=ndf/2 and x=chi2/2.
P(a,x) represents the probability that the observed Chi-squared
for a correct model should be less than the value chi2.
The returned probability corresponds to 1-P(a,x),
which denotes the probability that an observed Chi-squared exceeds
the value chi2 by chance, even for a correct model.
--- NvE 14-nov-1998 UU-SAP Utrecht
Int_t LocMin(Int_t n, Short_t *a)
Return index of array with the minimum element
If more than one element is minimum returns first found
Int_t LocMin(Int_t n, Int_t *a)
Return index of array with the minimum element
If more than one element is minimum returns first found
Int_t LocMin(Int_t n, Float_t *a)
Return index of array with the minimum element
If more than one element is minimum returns first found
Int_t LocMin(Int_t n, Double_t *a)
Return index of array with the minimum element
If more than one element is minimum returns first found
Int_t LocMax(Int_t n, Short_t *a)
Return index of array with the maximum element
If more than one element is maximum returns first found
Int_t LocMax(Int_t n, Int_t *a)
Return index of array with the maximum element
If more than one element is maximum returns first found
Int_t LocMax(Int_t n, Float_t *a)
Return index of array with the maximum element
If more than one element is maximum returns first found
Int_t LocMax(Int_t n, Double_t *a)
Return index of array with the maximum element
If more than one element is maximum returns first found
Int_t BinarySearch(Int_t n, Short_t *array, Short_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Short_t **array, Short_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Int_t *array, Int_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Int_t **array, Int_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Float_t *array, Float_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Float_t **array, Float_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Double_t *array, Double_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
Int_t BinarySearch(Int_t n, Double_t **array, Double_t value)
Binary search in an array of n values to locate value
Array is supposed to be sorted prior to this call.
If match is found, function returns position of element.
If no match found, function gives nearest element smaller than value.
void Sort(Int_t n1, Short_t *a, Int_t *index, Bool_t down)
Sort the n1 elements of the Short_t array a.
In output the array index contains the indices of the sorted array.
If down is false sort in increasing order (default is decreasing order).
This is a translation of the CERNLIB routine sortzv (M101)
based on the quicksort algorithm.
NOTE that the array index must be created with a length >= n1
before calling this function.
void Sort(Int_t n1, Int_t *a, Int_t *index, Bool_t down)
Sort the n1 elements of the Int_t array a.
In output the array index contains the indices of the sorted array.
If down is false sort in increasing order (default is decreasing order).
This is a translation of the CERNLIB routine sortzv (M101)
based on the quicksort algorithm.
NOTE that the array index must be created with a length >= n1
before calling this function.
void Sort(Int_t n1, Float_t *a, Int_t *index, Bool_t down)
Sort the n1 elements of the Float_t array a.
In output the array index contains the indices of the sorted array.
If down is false sort in increasing order (default is decreasing order).
This is a translation of the CERNLIB routine sortzv (M101)
based on the quicksort algorithm.
NOTE that the array index must be created with a length >= n1
before calling this function.
void Sort(Int_t n1, Double_t *a, Int_t *index, Bool_t down)
Sort the n1 elements of the Double_t array a.
In output the array index contains the indices of the sorted array.
If down is false sort in increasing order (default is decreasing order).
This is a translation of the CERNLIB routine sortzv (M101)
based on the quicksort algorithm.
NOTE that the array index must be created with a length >= n1
before calling this function.
ULong_t Hash(const void *txt, Int_t ntxt)
Calculates hash index from any char string
based on precalculated table of 256 specially selected
random numbers.
For string: i = TExMap::Hash(string,nstring);
For int: i = TExMap::Hash(&intword,sizeof(int));
For pointer: i = TExMap::Hash(&pointer,sizeof(void*));
Limitation: for ntxt>256 calculates hash only from first 256 bytes
V.Perev
ULong_t Hash(const char *txt)
Inline Functions
Double_t Pi()
Double_t E()
Double_t Sin(Double_t x)
Double_t Cos(Double_t x)
Double_t Tan(Double_t x)
Double_t SinH(Double_t x)
Double_t CosH(Double_t x)
Double_t TanH(Double_t x)
Double_t ASin(Double_t x)
Double_t ACos(Double_t x)
Double_t ATan(Double_t x)
Double_t ATan2(Double_t y, Double_t x)
Double_t Exp(Double_t x)
Double_t Power(Double_t x, Double_t y)
Double_t Log(Double_t x)
Double_t Log10(Double_t x)
Long_t Sqrt(Long_t x)
Long_t Hypot(Long_t x, Long_t y)
Short_t Abs(Short_t d)
Int_t Abs(Int_t d)
Long_t Abs(Long_t d)
Float_t Abs(Float_t d)
Double_t Abs(Double_t d)
Bool_t Even(Long_t a)
Bool_t Odd(Long_t a)
Short_t Sign(Short_t a, Short_t b)
Int_t Sign(Int_t a, Int_t b)
Long_t Sign(Long_t a, Long_t b)
Float_t Sign(Float_t a, Float_t b)
Double_t Sign(Double_t a, Double_t b)
Short_t Min(Short_t a, Short_t b)
UShort_t Min(UShort_t a, UShort_t b)
Int_t Min(Int_t a, Int_t b)
UInt_t Min(UInt_t a, UInt_t b)
Long_t Min(Long_t a, Long_t b)
ULong_t Min(ULong_t a, ULong_t b)
Float_t Min(Float_t a, Float_t b)
Double_t Min(Double_t a, Double_t b)
Short_t Max(Short_t a, Short_t b)
UShort_t Max(UShort_t a, UShort_t b)
Int_t Max(Int_t a, Int_t b)
UInt_t Max(UInt_t a, UInt_t b)
Long_t Max(Long_t a, Long_t b)
ULong_t Max(ULong_t a, ULong_t b)
Float_t Max(Float_t a, Float_t b)
Double_t Max(Double_t a, Double_t b)
Short_t Range(Short_t lb, Short_t ub, Short_t x)
Int_t Range(Int_t lb, Int_t ub, Int_t x)
Long_t Range(Long_t lb, Long_t ub, Long_t x)
ULong_t Range(ULong_t lb, ULong_t ub, ULong_t x)
Double_t Range(Double_t lb, Double_t ub, Double_t x)
Float_t NormCross(Float_t* v1, Float_t* v2, Float_t* out)
Double_t NormCross(Double_t* v1, Double_t* v2, Double_t* out)
TClass* Class()
TClass* IsA()
void ShowMembers(TMemberInspector& insp, char* parent)
void Streamer(TBuffer& b)
TMath TMath()
TMath TMath(TMath&)
void ~TMath()
Author: Fons Rademakers 29/07/95
Last update: 2.22/08 07/07/99 11.44.39 by Rene Brun
Copyright (c) 1995-1999, The ROOT System, All rights reserved. *
ROOT page - Class index - Top of the page
This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.