//*CMZ :  2.22/00 05/04/99  18.14.00  by  Rene Brun
//*CMZ :  2.21/01 05/01/99  16.29.20  by  Rene Brun
//*CMZ :  2.20/03 05/12/98  22.30.19  by  Rene Brun
//*CMZ :  2.00/11 17/08/98  15.18.36  by  Rene Brun
//*CMZ :  2.00/10 27/07/98  19.08.43  by  Rene Brun
//*CMZ :  2.00/08 25/05/98  10.08.25  by  Rene Brun
//*CMZ :  2.00/06 04/05/98  19.33.22  by  Rene Brun
//*CMZ :  1.03/09 12/12/97  16.18.13  by  Fons Rademakers
//*-- Author :    Rene Brun   29/09/95

//*KEEP,CopyRight,T=C.
/*************************************************************************
 * Copyright(c) 1995-1999, The ROOT System, All rights reserved.         *
 * Authors: Rene Brun, Fons Rademakers.                                  *
 * For list of contributors see $ROOTSYS/AA_CREDITS.                     *
 *                                                                       *
 * Permission to use, copy, modify and distribute this software and its  *
 * documentation for non-commercial purposes is hereby granted without   *
 * fee, provided that the above copyright notice appears in all copies   *
 * and that both the copyright notice and this permission notice appear  *
 * in the supporting documentation. The authors make no claims about the *
 * suitability of this software for any purpose. It is provided "as is"  *
 * without express or implied warranty.                                  *
 *************************************************************************/
//*KEND.

//*KEEP,TProfile.
#include "TProfile.h"
//*KEEP,TMath.
#include "TMath.h"
//*KEND.

ClassImp(TProfile)

//______________________________________________________________________________
//
//  Profile histograms are used to display the mean
//  value of Y and its RMS for each bin in X. Profile histograms are in many cases an
//  elegant replacement of two-dimensional histograms : the inter-relation of two
//  measured quantities X and Y can always be visualized by a two-dimensional
//  histogram or scatter-plot; its representation on the line-printer is not particularly
//  satisfactory, except for sparse data. If Y is an unknown (but single-valued)
//  approximate function of X, this function is displayed by a profile histogram with
//  much better precision than by a scatter-plot.
//
//  The following formulae show the cumulated contents (capital letters) and the values
//  displayed by the printing or plotting routines (small letters) of the elements for bin J.
//
//                                                    2
//      H(J)  =  sum Y                  E(J)  =  sum Y
//      l(J)  =  sum l                  L(J)  =  sum l
//      h(J)  =  H(J)/L(J)              s(J)  =  sqrt(E(J)/L(J)- h(J)**2)
//      e(J)  =  s(J)/sqrt(L(J))
//
//  In the special case where s(J) is zero (eg, case of 1 entry only in one bin)
//  e(J) is computed from the average of the s(J) for all bins.
//  This simple/crude approximation was suggested in order to keep the bin
//  during a fit operation.
//
//           Example of a profile histogram with its graphics output
//{
//  TCanvas *c1 = new TCanvas("c1","Profile histogram example",200,10,700,500);
//  hprof  = new TProfile("hprof","Profile of pz versus px",100,-4,4,0,20);
//  Float_t px, py, pz;
//  for ( Int_t i=0; i<25000; i++) {
//     gRandom->Rannor(px,py);
//     pz = px*px + py*py;
//     hprof->Fill(px,pz,1);
//  }
//  hprof->Draw();
//}
//
/*

*/
//
//

//______________________________________________________________________________
 TProfile::TProfile() : TH1D()
{
//*-*-*-*-*-*Default constructor for Profile histograms*-*-*-*-*-*-*-*-*
//*-*        ==========================================
}

//______________________________________________________________________________
 TProfile::~TProfile()
{
//*-*-*-*-*-*Default destructor for Profile histograms*-*-*-*-*-*-*-*-*
//*-*        =========================================

}

//______________________________________________________________________________
 TProfile::TProfile(const Text_t *name,const Text_t *title,Int_t nbins,Axis_t xlow,Axis_t xup,Option_t *option)
    : TH1D(name,title,nbins,xlow,xup)
{
//*-*-*-*-*-*Normal Constructor for Profile histograms*-*-*-*-*-*-*-*-*-*
//*-*        ==========================================
//
//  The first five parameters are similar to TH1D::TH1D.
//  All values of y are accepted at filling time.
//  To fill a profile histogram, one must use TProfile::Fill function.
//
//  Note that when filling the profile histogram the function Fill
//  checks if the variable y is betyween fYmin and fYmax.
//  If a minimum or maximum value is set for the Y scale before filling,
//  then all values below ymin or above ymax will be discarded.
//  Setting the minimum or maximum value for the Y scale before filling
//  has the same effect as calling the special TProfile constructor below
//  where ymin and ymax are specified.
//
//  H(J) is printed as the channel contents. The errors displayed are s(J) if CHOPT='S'
//  (spread option), or e(J) if CHOPT=' ' (error on mean).
//
//        See TProfile::BuildOptions for explanation of parameters
//

   BuildOptions(0,0,option);
}

//______________________________________________________________________________
 TProfile::TProfile(const Text_t *name,const Text_t *title,Int_t nbins,Axis_t *xbins,Option_t *option)
    : TH1D(name,title,nbins,xbins)
{
//*-*-*-*-*-*Constructor for Profile histograms with variable bin size*-*-*-*-*
//*-*        =========================================================
//
//        See TProfile::BuildOptions for more explanations on errors
//

   BuildOptions(0,0,option);
}

//______________________________________________________________________________
 TProfile::TProfile(const Text_t *name,const Text_t *title,Int_t nbins,Axis_t xlow,Axis_t xup,Axis_t ylow,Axis_t yup,Option_t *option)
    : TH1D(name,title,nbins,xlow,xup)
{
//*-*-*-*-*-*Constructor for Profile histograms with range in y*-*-*-*-*-*
//*-*        ==================================================
//  The first five parameters are similar to TH1D::TH1D.
//  Only the values of Y between YMIN and YMAX will be considered at filling time.
//  ymin and ymax will also be the maximum and minimum values
//  on the y scale when drawing the profile.
//
//        See TProfile::BuildOptions for more explanations on errors
//

   BuildOptions(ylow,yup,option);
}


//______________________________________________________________________________
 void TProfile::BuildOptions(Float_t ymin, Float_t ymax, Option_t *option)
{
//*-*-*-*-*-*-*Set Profile histogram structure and options*-*-*-*-*-*-*-*-*
//*-*          ===========================================
//
//    If a bin has N data points all with the same value Y (especially
//    possible when dealing with integers), the spread in Y for that bin
//    is zero, and the uncertainty assigned is also zero, and the bin is
//    ignored in making subsequent fits. If SQRT(Y) was the correct error
//    in the case above, then SQRT(Y)/SQRT(N) would be the correct error here.
//    In fact, any bin with non-zero number of entries N but with zero spread
//    should have an uncertainty SQRT(Y)/SQRT(N).
//
//    Now, is SQRT(Y)/SQRT(N) really the correct uncertainty?
//    that it is only in the case where the Y variable is some sort
//    of counting statistics, following a Poisson distribution. This should
//    probably be set as the default case. However, Y can be any variable
//    from an original NTUPLE, not necessarily distributed "Poissonly".
//    The computation of errors is based on the parameter option:
//    option:
//     ' '  (Default) Errors are Spread/SQRT(N) for Spread.ne.0. ,
//                      "     "  SQRT(Y)/SQRT(N) for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//     's'            Errors are Spread  for Spread.ne.0. ,
//                      "     "  SQRT(Y)  for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//     'i'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
//                      "     "  1./SQRT(12.*N) for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//
//    The third case above corresponds to Integer Y values for which the
//    uncertainty is +-0.5, with the assumption that the probability that Y
//    takes any value between Y-0.5 and Y+0.5 is uniform (the same argument
//    goes for Y uniformly distributed between Y and Y+1); this would be
//    useful if Y is an ADC measurement, for example. Other, fancier options
//    would be possible, at the cost of adding one more parameter to the PROFILE
//    command. For example, if all Y variables are distributed according to some
//    known Gaussian of standard deviation Sigma, then:
//     'G'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
//                      "     "  Sigma/SQRT(N) for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//    For example, this would be useful when all Y's are experimental quantities
//    measured with the same instrument with precision Sigma.
//
//

   SetErrorOption(option);

   fBinEntries.Set(fNcells);  //*-* create number of entries per bin array

   Sumw2();                   //*-* create sum of squares of weights array

   fYmin = ymin;
   fYmax = ymax;
}

//______________________________________________________________________________
 TProfile::TProfile(const TProfile &profile)
{
   ((TProfile&)profile).Copy(*this);
}


//______________________________________________________________________________
 void TProfile::Add(TH1 *h1, Float_t c1)
{
   // Performs the operation: this = this + c1*h1

   if (!h1) {
      Error("Add","Attempt to add a non-existing profile");
      return;
   }
   if (!h1->InheritsFrom("TProfile")) {
      Error("Add","Attempt to add a non-profile object");
      return;
   }
   TProfile *p1 = (TProfile*)h1;

   Int_t nbinsx = GetNbinsX();
//*-*- Check profile compatibility
   if (nbinsx != p1->GetNbinsX()) {
      Error("Add","Attempt to add profiles with different number of bins");
      return;
   }

//*-*- Add statistics
   Float_t ac1 = TMath::Abs(c1);
   fEntries += ac1*p1->GetEntries();
   fTsumw   += ac1*p1->fTsumw;
   fTsumw2  += ac1*p1->fTsumw2;
   fTsumwx  += ac1*p1->fTsumwx;
   fTsumwx2 += ac1*p1->fTsumwx2;

//*-*- Loop on bins (including underflows/overflows)
   Int_t bin;
   Double_t *cu1 = p1->GetW();
   Double_t *er1 = p1->GetW2();
   Double_t *en1 = p1->GetB();
   for (bin=0;bin<=nbinsx+1;bin++) {
      fArray[bin]             +=  c1*cu1[bin];
      fSumw2.fArray[bin]      += ac1*er1[bin];
      fBinEntries.fArray[bin] += ac1*en1[bin];
   }
}

//______________________________________________________________________________
 void TProfile::Add(TH1 *h1, TH1 *h2, Float_t c1, Float_t c2)
{
//*-*-*-*-*Replace contents of this profile by the addition of h1 and h2*-*-*
//*-*      =============================================================
//
//   this = c1*h1 + c2*h2
//

   if (!h1 || !h2) {
      Error("Add","Attempt to add a non-existing profile");
      return;
   }
   if (!h1->InheritsFrom("TProfile")) {
      Error("Add","Attempt to add a non-profile object");
      return;
   }
   TProfile *p1 = (TProfile*)h1;
   if (!h2->InheritsFrom("TProfile")) {
      Error("Add","Attempt to add a non-profile object");
      return;
   }
   TProfile *p2 = (TProfile*)h2;

   Int_t nbinsx = GetNbinsX();
//*-*- Check profile compatibility
   if (nbinsx != p1->GetNbinsX() || nbinsx != p2->GetNbinsX()) {
      Error("Add","Attempt to add profiles with different number of bins");
      return;
   }

//*-*- Add statistics
   Float_t ac1 = TMath::Abs(c1);
   Float_t ac2 = TMath::Abs(c2);
   fEntries = ac1*p1->GetEntries() + ac2*p2->GetEntries();
   fTsumw   = ac1*p1->fTsumw       + ac2*p2->fTsumw;
   fTsumw2  = ac1*p1->fTsumw2      + ac2*p2->fTsumw2;
   fTsumwx  = ac1*p1->fTsumwx      + ac2*p2->fTsumwx;
   fTsumwx2 = ac1*p1->fTsumwx2     + ac2*p2->fTsumwx2;

//*-*- Loop on bins (including underflows/overflows)
   Int_t bin;
   Double_t *cu1 = p1->GetW();
   Double_t *cu2 = p2->GetW();
   Double_t *er1 = p1->GetW2();
   Double_t *er2 = p2->GetW2();
   Double_t *en1 = p1->GetB();
   Double_t *en2 = p2->GetB();
   for (bin=0;bin<=nbinsx+1;bin++) {
      fArray[bin]             =  c1*cu1[bin] +  c2*cu2[bin];
      fSumw2.fArray[bin]      = ac1*er1[bin] + ac2*er2[bin];
      fBinEntries.fArray[bin] = ac1*en1[bin] + ac2*en2[bin];
   }
}

//______________________________________________________________________________
 void TProfile::Copy(TObject &obj)
{
//*-*-*-*-*-*-*-*Copy a Profile histogram to a new profile histogram*-*-*-*-*
//*-*            ===================================================

   TH1D::Copy(((TProfile&)obj));
   fBinEntries.Copy(((TProfile&)obj).fBinEntries);
   ((TProfile&)obj).fYmin = fYmin;
   ((TProfile&)obj).fYmax = fYmax;
   ((TProfile&)obj).fErrorMode = fErrorMode;
}

//______________________________________________________________________________
 void TProfile::Divide(TH1 *h1)
{
//*-*-*-*-*-*-*-*-*-*-*Divide this profile by h1*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*                  =========================
//
//   this = this/h1
//

   if (!h1) {
      Error("Divide","Attempt to divide a non-existing profile");
      return;
   }
   if (!h1->InheritsFrom("TProfile")) {
      Error("Divide","Attempt to divide a non-profile object");
      return;
   }
   TProfile *p1 = (TProfile*)h1;

   Int_t nbinsx = GetNbinsX();
//*-*- Check profile compatibility
   if (nbinsx != p1->GetNbinsX()) {
      Error("Divide","Attempt to divide profiles with different number of bins");
      return;
   }

//*-*- Reset statistics
   fEntries = fTsumw   = fTsumw2 = fTsumwx = fTsumwx2 = 0;

//*-*- Loop on bins (including underflows/overflows)
   Int_t bin;
   Double_t *cu1 = p1->GetW();
   Double_t *er1 = p1->GetW2();
   Double_t *en1 = p1->GetB();
   Double_t c0,c1,w,z,x;
   for (bin=0;bin<=nbinsx+1;bin++) {
      c0  = fArray[bin];
      c1  = cu1[bin];
      if (c1) w = c0/c1;
      else    w = 0;
      fArray[bin] = w;
      z = TMath::Abs(w);
      x = GetBinCenter(bin);
      fEntries++;
      fTsumw   += z;
      fTsumw2  += z*z;
      fTsumwx  += z*x;
      fTsumwx2 += z*x*x;
      Double_t e0 = fSumw2.fArray[bin];
      Double_t e1 = er1[bin];
      Double_t c12= c1*c1;
      if (!c1) fSumw2.fArray[bin] = 0;
      else     fSumw2.fArray[bin] = (e0*e0*c1*c1 + e1*e1*c0*c0)/(c12*c12);
      if (!en1[bin]) fBinEntries.fArray[bin] = 0;
      else           fBinEntries.fArray[bin] /= en1[bin];
   }
}


//______________________________________________________________________________
 void TProfile::Divide(TH1 *h1, TH1 *h2, Float_t c1, Float_t c2, Option_t *option)
{
//*-*-*-*-*Replace contents of this profile by the division of h1 by h2*-*-*
//*-*      ============================================================
//
//   this = c1*h1/(c2*h2)
//

   TString opt = option;
   opt.ToLower();
   Bool_t binomial = kFALSE;
   if (opt.Contains("b")) binomial = kTRUE;
   if (!h1 || !h2) {
      Error("Divide","Attempt to divide a non-existing profile");
      return;
   }
   if (!h1->InheritsFrom("TProfile")) {
      Error("Divide","Attempt to divide a non-profile object");
      return;
   }
   TProfile *p1 = (TProfile*)h1;
   if (!h2->InheritsFrom("TProfile")) {
      Error("Divide","Attempt to divide a non-profile object");
      return;
   }
   TProfile *p2 = (TProfile*)h2;

   Int_t nbinsx = GetNbinsX();
//*-*- Check histogram compatibility
   if (nbinsx != p1->GetNbinsX() || nbinsx != p2->GetNbinsX()) {
      Error("Divide","Attempt to divide profiles with different number of bins");
      return;
   }
   if (!c2) {
      Error("Divide","Coefficient of dividing profile cannot be zero");
      return;
   }

//*-*- Reset statistics
   fEntries = fTsumw   = fTsumw2 = fTsumwx = fTsumwx2 = 0;

//*-*- Loop on bins (including underflows/overflows)
   Int_t bin;
   Double_t *cu1 = p1->GetW();
   Double_t *cu2 = p2->GetW();
   Double_t *er1 = p1->GetW2();
   Double_t *er2 = p2->GetW2();
   Double_t *en1 = p1->GetB();
   Double_t *en2 = p2->GetB();
   Double_t b1,b2,w,z,x,d1,d2;
   d1 = c1*c1;
   d2 = c2*c2;
   for (bin=0;bin<=nbinsx+1;bin++) {
      b1  = cu1[bin];
      b2  = cu2[bin];
      if (b2) w = c1*b1/(c2*b2);
      else    w = 0;
      fArray[bin] = w;
      z = TMath::Abs(w);
      x = GetBinCenter(bin);
      fEntries++;
      fTsumw   += z;
      fTsumw2  += z*z;
      fTsumwx  += z*x;
      fTsumwx2 += z*x*x;
      Double_t e1 = er1[bin];
      Double_t e2 = er2[bin];
      Double_t b22= b2*b2*d2;
      if (!b2) fSumw2.fArray[bin] = 0;
      else {
         if (binomial) {
            fSumw2.fArray[bin] = TMath::Abs(w*(1-w)/(c2*b2));
         } else {
         fSumw2.fArray[bin] = d1*d2*(e1*e1*b2*b2 + e2*e2*b1*b1)/(b22*b22);
         }
      }
      if (!en2[bin]) fBinEntries.fArray[bin] = 0;
      else           fBinEntries.fArray[bin] = en1[bin]/en2[bin];
   }
}

//______________________________________________________________________________
 TH1 *TProfile::DrawCopy(Option_t *option)
{
//*-*-*-*-*-*-*-*Draw a copy of this profile histogram*-*-*-*-*-*-*-*-*-*-*-*
//*-*            =====================================
   TProfile *newpf = new TProfile();
   Copy(*newpf);
   newpf->SetDirectory(0);
   newpf->SetBit(kCanDelete);
   newpf->AppendPad(option);
   return newpf;
}

//______________________________________________________________________________
 Int_t TProfile::Fill(Axis_t x, Axis_t y)
{
//*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram (no weights)*-*-*-*-*-*-*-*
//*-*                  =====================================
   Int_t bin;

   if (fYmin != fYmax) {
      if (y <fYmin || y> fYmax) return -1;
   }

   fEntries++;
   bin =fXaxis.FindBin(x);
   AddBinContent(bin, y);
   fSumw2.fArray[bin] += (Stat_t)y*y;
   fBinEntries.fArray[bin] += 1;
   if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
   fTsumw++;
   fTsumw2++;
   fTsumwx  += x;
   fTsumwx2 += x*x;
   return bin;
}

//______________________________________________________________________________
 Int_t TProfile::Fill(Axis_t x, Axis_t y, Stat_t w)
{
//*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram with weights*-*-*-*-*-*-*-*
//*-*                  =====================================
   Int_t bin;

   if (fYmin != fYmax) {
      if (y <fYmin || y> fYmax) return -1;
   }

   Stat_t z= (w > 0 ? w : -w);
   fEntries++;
   bin =fXaxis.FindBin(x);
   AddBinContent(bin, z*y);
   fSumw2.fArray[bin] += z*y*y;
   fBinEntries.fArray[bin] += w;
   if (bin == 0 || bin > fXaxis.GetNbins()) return -1;
   fTsumw   += z;
   fTsumw2  += z*z;
   fTsumwx  += z*x;
   fTsumwx2 += z*x*x;
   return bin;
}


//______________________________________________________________________________
 void TProfile::FillN(Int_t ntimes, Axis_t *x, Axis_t *y, Stat_t *w, Int_t stride)
{
//*-*-*-*-*-*-*-*-*-*-*Fill a Profile histogram with weights*-*-*-*-*-*-*-*
//*-*                  =====================================
   Int_t bin,i;
   ntimes *= stride;
   for (i=0;i<ntimes;i+=stride) {
      if (fYmin != fYmax) {
         if (y[i] <fYmin || y[i]> fYmax) continue;
      }

      Stat_t z= (w[i] > 0 ? w[i] : -w[i]);
      fEntries++;
      bin =fXaxis.FindBin(x[i]);
      AddBinContent(bin, z*y[i]);
      fSumw2.fArray[bin] += z*y[i]*y[i];
      fBinEntries.fArray[bin] += w[i];
      fTsumw   += z;
      fTsumw2  += z*z;
      fTsumwx  += z*x[i];
      fTsumwx2 += z*x[i]*x[i];
   }
}

//______________________________________________________________________________
 Stat_t TProfile::GetBinContent(Int_t bin)
{
//*-*-*-*-*-*-*Return bin content of a Profile histogram*-*-*-*-*-*-*-*-*-*
//*-*          =========================================

   if (bin < 0 || bin >= fNcells) return 0;
   if (fBinEntries.fArray[bin] == 0) return 0;
   return fArray[bin]/fBinEntries.fArray[bin];
}

//______________________________________________________________________________
 Stat_t TProfile::GetBinEntries(Int_t bin)
{
//*-*-*-*-*-*-*Return bin entries of a Profile histogram*-*-*-*-*-*-*-*-*-*
//*-*          =========================================

   if (bin < 0 || bin >= fNcells) return 0;
   return fBinEntries.fArray[bin];
}

//______________________________________________________________________________
 Stat_t TProfile::GetBinError(Int_t bin)
{
//*-*-*-*-*-*-*Return bin error of a Profile histogram*-*-*-*-*-*-*-*-*-*
//*-*          =======================================

   if (bin < 0 || bin >= fNcells) return 0;
   Stat_t cont = fArray[bin];
   Stat_t sum  = fBinEntries.fArray[bin];
   Stat_t err2 = fSumw2.fArray[bin];
   if (sum == 0) return 0;
   Stat_t eprim;
   Stat_t contsum = cont/sum;
   Stat_t eprim2  = TMath::Abs(err2/sum - contsum*contsum);
   eprim          = TMath::Sqrt(eprim2);
   if (eprim <= 0) {
      Stat_t scont, ssum, serr2;
      scont = ssum = serr2 = 0;
      for (Int_t i=1;i<fNcells;i++) {
         scont += fArray[i];
         ssum  += fBinEntries.fArray[i];
         serr2 += fSumw2.fArray[i];
      }
      Stat_t scontsum = scont/ssum;
      Stat_t seprim2  = TMath::Abs(serr2/ssum - scontsum*scontsum);
      eprim           = TMath::Sqrt(seprim2);
   }
   if (fErrorMode == kERRORMEAN) return eprim/TMath::Sqrt(sum);
   else if (fErrorMode == kERRORSPREAD) return eprim;
   else return eprim;
}

//______________________________________________________________________________
 Option_t *TProfile::GetErrorOption() const
{
//*-*-*-*-*-*-*-*-*-*Return option to compute profile errors*-*-*-*-*-*-*-*-*
//*-*                =======================================

   if (fErrorMode == kERRORSPREAD)  return "s";
   if (fErrorMode == kERRORSPREADI) return "i";
   if (fErrorMode == kERRORSPREADG) return "g";
   return "";
}

//______________________________________________________________________________
 void TProfile::Multiply(TH1 *)
{
//*-*-*-*-*-*-*-*-*-*-*Multiply this profile by h1*-*-*-*-*-*-*-*-*-*-*-*-*
//*-*                  =============================
//
//   this = this*h1
//
   Error("Multiply","Multiplication of profile histograms not implemented");
}


//______________________________________________________________________________
 void TProfile::Multiply(TH1 *, TH1 *, Float_t, Float_t, Option_t *)
{
//*-*-*-*-*Replace contents of this profile by multiplication of h1 by h2*-*
//*-*      ================================================================
//
//   this = (c1*h1)*(c2*h2)
//

   Error("Multiply","Multiplication of profile histograms not implemented");
}

//______________________________________________________________________________
 void TProfile::Reset(Option_t *option)
{
//*-*-*-*-*-*-*-*-*-*Reset contents of a Profile histogram*-*-*-*-*-*-*-*-*
//*-*                =====================================
  TH1D::Reset(option);
  fBinEntries.Reset();
}

//______________________________________________________________________________
 void TProfile::Scale(Float_t c1)
{
//*-*-*-*-*Multiply this profile by a constant c1*-*-*-*-*-*-*-*-*
//*-*      ======================================
//
//   this = c1*this
//
// This function uses the services of TProfile::Add
//

   Double_t ent = fEntries;
   Add(this,this,c1,0);
   fEntries = ent;
}

//______________________________________________________________________________
 void TProfile::SetBinEntries(Int_t bin, Stat_t w)
{
//*-*-*-*-*-*-*-*-*Set the number of entries in bin*-*-*-*-*-*-*-*-*-*-*-*
//*-*              ================================

   if (bin < 0 || bin >= fNcells) return;
   fBinEntries.fArray[bin] = w;
}

//______________________________________________________________________________
 void TProfile::SetBins(Int_t nx, Float_t xmin, Float_t xmax)
{
//*-*-*-*-*-*-*-*-*Redefine  x axis parameters*-*-*-*-*-*-*-*-*-*-*-*
//*-*              ===========================

   fXaxis.Set(nx,xmin,xmax);
   fNcells = nx+2;
   fBinEntries.Set(fNcells);
   fSumw2.Set(fNcells);
}

//______________________________________________________________________________
 void TProfile::SetErrorOption(Option_t *option)
{
//*-*-*-*-*-*-*-*-*-*Set option to compute profile errors*-*-*-*-*-*-*-*-*
//*-*                =====================================
//
//    The computation of errors is based on the parameter option:
//    option:
//     ' '  (Default) Errors are Spread/SQRT(N) for Spread.ne.0. ,
//                      "     "  SQRT(Y)/SQRT(N) for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//     's'            Errors are Spread  for Spread.ne.0. ,
//                      "     "  SQRT(Y)  for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//     'i'            Errors are Spread/SQRT(N) for Spread.ne.0. ,
//                      "     "  1./SQRT(12.*N) for Spread.eq.0,N.gt.0 ,
//                      "     "  0.  for N.eq.0
//   See TProfile::BuildOptions for explanation of all options

   TString opt = option;
   opt.ToLower();
   fErrorMode = kERRORMEAN;
   if (opt.Contains("s")) fErrorMode = kERRORSPREAD;
   if (opt.Contains("i")) fErrorMode = kERRORSPREADI;
   if (opt.Contains("g")) fErrorMode = kERRORSPREADG;
}


ROOT page - Class index - Top of the page

This page has been automatically generated. If you have any comments or suggestions about the page layout send a mail to ROOT support, or contact the developers with any questions or problems regarding ROOT.