//*CMZ : 2.22/09 12/07/99 18.44.19 by Rene Brun //*CMZ : 2.22/07 02/07/99 08.20.08 by Rene Brun //*CMZ : 2.22/06 23/06/99 08.24.47 by Rene Brun //*CMZ : 2.21/06 15/02/99 09.36.40 by Rene Brun //*-- Author : Pasha Murat , Peter Malzacher 12/02/99 //______________________________________________________________________________ //*-*-*-*-*-*-*-*-*-*-*-*The Physics Vector package *-*-*-*-*-*-*-*-*-*-*-* //*-* ========================== * //*-* The Physics Vector package consists of five classes: * //*-* - TVector2 * //*-* - TVector3 * //*-* - TRotation * //*-* - TLorentzVector * //*-* - TLorentzRotation * //*-* It is a combination of CLHEPs Vector package written by * //*-* Leif Lonnblad, Andreas Nilsson and Evgueni Tcherniaev * //*-* and a ROOT package written by Pasha Murat. * //*-* for CLHEP see: http://wwwinfo.cern.ch/asd/lhc++/clhep/ * //*-* Adaption to ROOT by Peter Malzacher * //*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* // /*
TLorentzVector v1; // initialized
by (0., 0., 0., 0.)
TLorentzVector v2(1., 1., 1., 1.);
TLorentzVector v3(v1);
TLorentzVector v4(TVector3(1., 2., 3.),4.);
For backward compatibility there are two constructors from an Double_t
and Float_t C array.
Double_t xx =v.X();
...
Double_t tt = v.T();
Double_t px = v.Px();
...
Double_t ee = v.E();
The components of TLorentzVector can also accessed by index:
xx = v(0); or
xx = v[0];
yy = v(1);
yy = v[1];
zz = v(2);
zz = v[2];
tt = v(3);
tt = v[3];
You can use the Vect() member function to get the vector component of TLorentzVector:
TVector3 p = v.Vect();
For setting components also two sets of member functions can be used:
SetX(),.., SetPx(),..:
v.SetX(1.); or
v.SetPx(1.);
...
...
v.SetT(1.);
v.SetE(1.);
To set more the one component by one call you can use the SetVect() function for the TVector3 part or SetXYZT(), SetPxPyPzE(). For convenience there is also a SetXYZM():
v.SetVect(TVector3(1,2,3));
v.SetXYZT(x,y,z,t);
v.SetPxPyPzE(px,py,pz,e);
v.SetXYZM(x,y,z,m); // ->
v=(x,y,z,e=Sqrt(x*x+y*y+z*z+m*m))
Double_t m, theta, cost, phi, pp, pp2, ppv2, pp2v2;
m = v.Rho();
t = v.Theta();
cost = v.CosTheta();
phi = v.Phi();
v.SetRho(10.);
v.SetTheta(TMath::Pi()*.3);
v.SetPhi(TMath::Pi());
or get infoormation about the r-coordinate in cylindrical systems:
Double_t pp, pp2, ppv2, pp2v2;
pp = v.Perp(); // get transvers component
pp2 = v.Perp2(); // get transverse component squared
ppv2 = v.Perp(v1); // get
transvers component with
// respect to another vector
pp2v2 = v.Perp(v1);
for convenience there are two more set functions SetPtEtaPhiE(pt,eta,phi,e); and SetPtEtaPhiM(pt,eta,phi,m);
v3 = -v1;
v1 = v2+v3;
v1+= v3;
v1 = v2 + v3;
v1-= v3;
if (v1 == v2) {...}
if(v1 != v3) {...}
Double_t s, s2;
s = v1.Dot(v2); // scalar
product
s = v1*v2; // scalar product
s2 = v.Mag2(); or s2 = v.M2();
s = v.Mag();
s = v.M();
Since in case of momentum and energy the magnitude has the meaning of invariant mass TLorentzVector provides the more meaningful aliases M2() and M();
The member functions Beta() and Gamma() returns beta and gamma = 1/Sqrt(1-beta*beta).
The member function Boost() performs a boost transformation from the rod frame to the original frame. BoostVector() returns a TVector3 of the spatial components divided by the time component:
TVector3 b;
v.Boost(bx,by,bz);
v.Boost(b);
b = v.BoostVector(); // b=(x/t,y/t,z/t)
Double_t pcone = v.Plus();
Double_t mcone = v.Minus();
TLorentzRotation l;
v.Transform(l);
v = l*v; or
v *= l; // Attention v = l*v
*/ // //*KEEP,TError. #include "TError.h" //*KEEP,TLorentzVector,T=C++. #include "TLorentzVector.h" //*KEEP,TLorentzRotation,T=C++. #include "TLorentzRotation.h" //*KEND. ClassImp(TLorentzVector) TLorentzVector::TLorentzVector(Double_t x, Double_t y, Double_t z, Double_t t) : fX(x), fY(y), fZ(z), fE(t) {} TLorentzVector::TLorentzVector(Double_t * x0) : fX(x0[0]), fY(x0[1]), fZ(x0[2]), fE(x0[3]) {} TLorentzVector::TLorentzVector(Float_t * x0) : fX(x0[0]), fY(x0[1]), fZ(x0[2]), fE(x0[3]) {} TLorentzVector::TLorentzVector(const TVector3 & p, Double_t e) : fX(p.X()), fY(p.Y()), fZ(p.Z()), fE(e) {} TLorentzVector::TLorentzVector(const TLorentzVector & p) : fX(p.X()), fY(p.Y()), fZ(p.Z()), fE(p.T()) {} Double_t TLorentzVector::operator () (int i) const { switch(i) { case kX: return fX; case kY: return fY; case kZ: return fZ; case kT: return fE; default: Warning("operator()()", "bad index (%d)",i); } return 0.; } Double_t & TLorentzVector::operator () (int i) { switch(i) { case kX: return fX; case kY: return fY; case kZ: return fZ; case kT: return fE; default: Warning("operator()()", "bad index (%d)",i); } Double_t dummy; Double_t & rdummy = dummy; return rdummy; } void TLorentzVector::Boost(Double_t bx, Double_t by, Double_t bz) { Double_t b2 = bx*bx + by*by + bz*bz; register Double_t gamma = 1.0 / TMath::Sqrt(1.0 - b2); register Double_t bp = bx*X() + by*Y() + bz*Z(); register Double_t gamma2 = b2 > 0 ? (gamma - 1.0)/b2 : 0.0; SetX(X() + gamma2*bp*bx + gamma*bx*T()); SetY(Y() + gamma2*bp*by + gamma*by*T()); SetZ(Z() + gamma2*bp*bz + gamma*bz*T()); SetT(gamma*(T() + bp)); } Double_t TLorentzVector::Rapidity() const { return 0.5*log( (E()+Pz()) / (E()-Pz()) ); } TLorentzVector &TLorentzVector::operator *= (const TLorentzRotation & m) { return *this = m.VectorMultiplication(*this); } TLorentzVector &TLorentzVector::Transform(const TLorentzRotation & m) { return *this = m.VectorMultiplication(*this); } void TLorentzVector::RotateX(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t yy = fY; fY = c*yy - s*fZ; fZ = s*yy + c*fZ; } void TLorentzVector::RotateY(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t zz = fZ; fZ = c*zz - s*fX; fX = s*zz + c*fX; } void TLorentzVector::RotateZ(Double_t angle) { Double_t s = TMath::Sin(angle); Double_t c = TMath::Cos(angle); Double_t xx = fX; fX = c*xx - s*fY; fY = s*xx + c*fY; } void TLorentzVector::RotateUz(TVector3 &newUzVector) { // NewUzVector must be normalized ! Double_t u1 = newUzVector.X(); Double_t u2 = newUzVector.Y(); Double_t u3 = newUzVector.Z(); Double_t up = u1*u1 + u2*u2; if (up) { up = TMath::Sqrt(up); Double_t px = fX, py = fY, pz = fZ; fX = (u1*u3*px - u2*py + u1*up*pz)/up; fY = (u2*u3*px + u1*py + u2*up*pz)/up; fZ = (u3*u3*px - px + u3*up*pz)/up; } else if (u3 < 0.) { fX = -fX; fZ = -fZ; } // phi=0 teta=pi else {}; }