

3rd International Conference on New Frontiers in Physics

Search for Charmonium(-like) (Exotic) States at PANDA

M. J. Galuska, S. Lange, S. Reiter, M. N. Wagner (JLU Gießen) E. Prencipe (FZ Jülich) S. Spataro (U. and INFN Torino) for the PANDA Collaboration

This work was supported in part by BMBF (06GI9107I), HGS-HIRe for FAIR and the LOEWE-Zentrum HICforFAIR.

Helmholtz International Center

Helmholtz Graduate School for Hadron and Ion Research

Bundesministerium für Bildung und Forschung

Outline

- The PANDA Experiment
- Simulations for Experimental Techniques
 - Resonance Scan
 - Radiative Cascade
 - Recoil Mass Technique
- Conclusions and Outlook

The **PANDA** Detector

For details see talk by G. Boca: "The Experiment PANDA: Physics With Antiprotons at FAIR", July, 29th @ FAIR workshop

Vertexing for $D, K_{\rm S}^0, \Lambda$

Charmonium(-like) (Exotic) States at PANDA

High raw data rates in the order of 100 GB/s

The High Energy Storage Ring (HESR)

Operation Mode	High Resolution Mode	High Luminosity Mode	
# stored antiprotons	1010	1011	
Luminosity	Up to 2*10 ³¹ cm ⁻² s ⁻¹	p to $2*10^{31}$ cm ⁻² s ⁻¹ Up to $2*10^{32}$ cm ⁻² s ⁻¹	
$\Delta p_{beam}/p_{beam}$	≤ 5*10 ⁻⁵	1*10-4	
Beam cooling	Electron cooling + Stochastic cooling	Stochastic cooling	

Martin J. Galuska (PANDA Collaboration, JLU Giessen)

Charmonium(-like) (Exotic) States at PANDA

Charmonium(-like) States at **PANDA**

- High mass and high angular momentum states accessible $p_{beam} \le 15 \text{ GeV/c} \rightarrow m_{cc} \le 5.5 \text{ GeV} \text{ for } \overline{p}p \rightarrow cc$ $L \ge 10 \text{ possible}$
- High statistics

 $\sigma_{\overline{p}p \to c\overline{c}} = 50 \text{ nb} \to 4.3 \times 10^5 \text{ events per 1 day (high luminosity mode)}$

- All quantum numbers accessible in production
- All non-exotic quantum numbers accessible in formation -Resonance scans
- Excellent E_{cm} resolution

FWHM = 160 keV @ m_{cc} = 4 GeV (in high resolution mode)

- Gluon-rich environment
- High hadronic background

ormation in

00000

10000

000000

3 gluons:

pp annihilation

2 gluons: 0⁻⁺. 0⁺⁺. 2⁺⁺. ...

Resonance Scan

For processes of the form
 Initial state → R → final state
 σ_R given by the Breit-Wigner formula:

 $\sigma_{\rm BW}(E_{\rm cm}) = \frac{(2J+1)}{(2S_1+1)\cdot(2S_2+1)} \cdot \frac{\pi}{k^2} \cdot \frac{\mathcal{B}_{\rm in}(i)\cdot\mathcal{B}_{\rm out}(f)\cdot\Gamma_R^2}{(E_{\rm cm}-M_R)^2+\Gamma_R^2/4}$

 $(2O_1 + 1) \cdot (2O_2 + 1) \quad \mathsf{K}^- \quad (E_{\rm cm} - INI_R)^- + 1_R^2/4$ • Count rate v: $v = \mathcal{L} \cdot \left(\varepsilon_{\rm sig.} \cdot \int \sigma_{\rm BW}(E_{\rm cm}) \cdot B(E_{\rm cm}, E_{\rm cm0}) \, dE_{\rm cm} + \varepsilon_{\rm bkg.} \cdot \sigma_{\rm bkg.} \right) \quad \forall I \sigma / B$

 $= B(E_{cm}, E_{cm0})$: Beam energy distribution

around nominal value E_{cm0}

- Measure rate as function of the cm energy E_{cm0} . $\rightarrow M_R$, Γ_R and $B_{in}^*B_{out}$.
- Resolution only limited by knowledge of cm energy.
- PID and momentum resolution needed for background suppression.

Isolated resonance *R* of mass M_R , small total width Γ_R and spin *J* Formation in collision of 2 particles (spin S_1 , S_2 , not γ) *k* center of mass momentum in initial state *i*

 ν / σ / Β

 Measured rate ν

 Measured rate ν

 B(Ecm, Ecm0)

 Beam profiles

 during scanning

6

 E_{cm}

X(3872) Resonance Scan at PANDA

For an introduction to XYZ states see talk by W. Kühn: "BESIII Highlights", July, 29th @ FAIR workshop

• X(3872) formation in e^+e^- annihilations suppressed due to $J^{PC}=1^{++}$

Radiative Cascade for ${}^{3}F_{4}$ (= ${}^{2S+1}L_{J}$) $c\bar{c}$ state

- Formation of high angular momentum resonance ³F₄.
- Decay to ground state and to open charm suppressed by angular momentum barrier.
- Decay via a γ cascade (ΔL=1) with narrow intermediate resonances can be used to identify the resonance.

Search for ${}^{3}F_{4}$ at $\overline{P}ANDA$

• Branching fractions for radiative decays: $\psi' \rightarrow \chi_{c0} \gamma \quad \mathcal{B} = 9.84 \pm 0.31\% \text{ [pdg]}$ More details can be found in arXiv:1311.7597 [hep-ex].

- → Assume \mathcal{B} = 10% for all 3 γ transitions.
- Clean signature of J/ψ + 3 γ with 150 MeV < E_{CMS} < 450 MeV.
- 4C Fit with cut on χ^2 and on invariant mass to suppress background.
- Background simulation based on dual parton model [dpm] $\rightarrow \gamma$ from light hadron decays.

Recoil ("Missing") Mass Technique

- Select events, reject background.
- Fit and subtract background from data.
- Fit background subtracted data \rightarrow signal(s).

Method was used for finding h_b and h_b' at Belle

Belle, 121.4 fb⁻¹ Phys. Rev. Lett 108(2011)032001 $h_{c}' (n=2, ^{2S+1}L_{J}=^{1}P_{1}, J^{PC}=1^{+-}, c\bar{c} state)$

Prediction from potential model $m = 3934 - 3956 \text{ MeV/c}^{2*}$

Predicted width Γ =87 MeV/c² (decay to $\overline{D}D^*$ open)

 h_c' and h_c suppressed at B-Factories: $0^{-+} \rightarrow 0^{-+} 1^{+-} (B \rightarrow K h_c')$ forbidden in factorisation limit. (Additional gluon required

between K and h_c')

 h_c ' and h_c suppressed at BESIII: In 1⁻⁻ decays, 1⁺⁻ can only be produced by 1⁻⁻→1⁺⁻ π⁰ (isospin-violating → BR ≤ 10⁻³)

* Mass & width prediction by Barnes, Godfrey, Swanson Phys. Rev. D72(2005)054026

h_c' Recoil Mass Search at PANDA

A signal cross section of $\sigma \approx 30$ nb for $\overline{p}p \rightarrow h_c'(\rightarrow D^0 \overline{D}^{0*}) \pi^+ \pi^-$ (+ c.c.)

is required to achieve $S/\sqrt{(S+B)} \ge 5$ in 10 weeks of data taking.

Fit results	Input	Reconstructed
m(h _c ') [MeV/c ²]	3945	3940±5
Γ(h _c ') [MeV]	87	54.2±40.0
m _{x(3872)} [MeV/c ²]	3872	Fixed
Γ _{X(3872)} [MeV]	1.2	40.7±4.5 (detector resolution)

Conclusions and Outlook

- Simulations were shown for
 - X(3872) resonance scan
 - Radiative cascade for high angular momentum cc state ³F₄
 - Recoil mass technique for h_c'

13

- PANDA offers a multitude of ways to study charmonium(-like) resonances with $\overline{p}p$ annihilations for resonances with $m_{c\bar{c}} \le 5.5 \text{ GeV/c}^2$.
 - Unprecedented antiproton beam momentum resolution.
- PANDA is well suited for
 - scans of (narrow) resonances with any non-exotic quantum numbers.
 - search for resonances via the recoil method.
 - search for high angular momentum states.
 - search for glueballs and hybrids. (Not shown in this talk).

Thank you.

References

[pdg] J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) and 2013 partial update for the 2014 edition.

[dpm] Dual Parton Model:

- A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van Phys. Rept. 236, 225 (1994)
- A. B. Kaidalov, P. E. Volkovitsky Z. Phys. C63, 517 (1994)
- V. V. Uzhinsky and A. S. Galoyan, hep-ph/0212369

BACKUP

Background Cross Sections for p

Background Rejection O(10⁶) for X(3872) Resonance Scan

Martin J. Galuska (PANDA Collaboration, JLU Giessen)

Charmonium(-like) (Exotic) States at PANDA

In the Paper [lhcb13] "Measurements of the Branching Fractions of $B^+ \rightarrow p\overline{p}K^+$ Decays"...

... the LHCb Collaboration studied

$$\frac{\mathcal{B}(B^+ \to \text{``mode''}K^+ \to p\bar{p}K^+)}{\mathcal{B}(B^+ \to J/\psi K^+ \to p\bar{p}K^+)}$$

for several charmonium(-like) states "mode"

One of these states is the X(3872)

LHCb Data Sample for Decay Channel $B^+ \rightarrow p\overline{p}K^+$

- Collected at $\sqrt{s} = 7$ TeV with p + p collisions
- $\mathcal{L}_{int} = 1.0 \text{ fb}^{-1} \text{ data}$
- 6951 ± 176 $B^+ \rightarrow p\overline{p}K^+$ (+c.c.) decays reconstructed

[Ihcb13] R. Aaij et al. (LHCb Collaboration): "Measurements of the Branching Fractions of $B^+ \rightarrow p\overline{p}K^+$ Decays", LHCb-PAPER-2012-047, CERN-PH-EP-2013-040, arXiv:1303.7133 [hep-ex], submitted to EPJ C (2013)

Material from M. Galuska, Talk at PANDA CM June 2013

The Result for X(3872) from the LHCb Paper [lhcb13]

• LHCb did not see any signal for the X(3872) and obtained an upper limit for

$$\mathcal{B}(B^+ \to X(3872)K^+ \to p\bar{p}K^+) < (1.7 \pm 0.1) \cdot 10^{-8}$$
 (95% C.L.)

which corresponds to

$$\frac{\mathcal{B}(X(3872) \to p\bar{p})}{\mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)} < (2.0 \pm 0.2) \cdot 10^{-3} \quad (95\% \text{ C.L.})$$

Material from M. Galuska, Talk at PANDA CM June 2013

Upper Limit for X(3872) Peak Production Cross Section in pp

The published upper limit [lhcb13]

$$\mathcal{B}(X(3872) \to p\bar{p}) < 2.0 \cdot 10^{-3} \cdot \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$$
 (95% C.L.)

implies

$$\sigma_{[p\overline{p}\rightarrow X(3872)]}^{\text{peak}} = \frac{(2 \cdot J + 1) \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot \frac{\mathcal{B}(X(3872) \rightarrow p\overline{p})}{\mathcal{B}(X(3872) \rightarrow p\overline{p})} \cdot \frac{\mathcal{B}(X(3872) \rightarrow all) \cdot \Gamma_{X(3872)}^2}{\mathcal{B}(X(3872) \rightarrow all) \cdot \Gamma_{X(3872)}^2} + \Gamma_{X(3872)}^2$$

$$\underbrace{4(m_{X(3872)} - m_{X(3872)})^2}_{=0} + \Gamma_{X(3872)}^2 + \Gamma_{X(3872)}^2$$

$$\underbrace{4(m_{X(3872)} - m_{X(3872)})^2}_{=0} + \Gamma_{X(3872)}^2 + \Gamma_{X(3872)}^2$$
which depends on
$$\mathcal{B}(X(3872) \rightarrow J/\psi \pi^+\pi^-) > 2.6 \cdot 10^{-2}$$
for which only a lower limit is published [pdg12]

Material from M. Galuska, Talk at PANDA CM June 2013

Tightest Upper Limit for X(3872) Peak Production Cross Section in pp

$$\sigma^{\text{peak}}_{[p\bar{p}\to X(3872)]} \stackrel{(J=1)}{<} \frac{3 \cdot 4\pi}{m_{X(3872)}^2 - 4m_p^2} \cdot 2.0 \cdot 10^{-3} \cdot 2.6 \cdot 10^{-2} = 66.6 \pm 6.7 \text{ nb}$$

using $\mathcal{B}(B^+ \to X(3872)K^+ \to p\bar{p}K^+)$ the result is $68.0 \pm 4.0 \text{ nb}$

Material from M. Galuska, Talk at PANDA CM June 2013

Radiative Cascade for ${}^{3}F_{4}$ (= ${}^{2S+1}L_{1}$) cc state

Background Subtraction for *hc***'***Recoil Mass Study*

Applied Cuts:

- PID
- \geq 1 D^ o cand. via 3 σ cut on $m_{_{\pi^+\,K_-}}$
- vertex fit
 - χ² < 5
 - $|z| \le 0.7 \text{ mm}$
 - $|\rho| \le 0.1 \text{ mm}$
- p_{lab}(π[±])>1.2 GeV

Any additional background for ³F₄?

```
Radiative decays of X(3872)?
```

```
X(3872) \rightarrow J/\psi \gamma seen by Belle and BaBar
E<sub>\gamma</sub>=772 MeV/c<sup>2</sup> (high \rightarrow outside of our range here)
X(3872) \rightarrow \psi'\gamma evidence at BaBar, not confirmed by Belle
X(3872) \rightarrow \chi_{cJ}\gamma not seen yet
```

```
BUT from {}^{3}F_{4} to X(3872)

4^{++} \rightarrow 1^{++} forbidden

4^{++} \rightarrow 1^{--} (e.g. \psi') suppressed by

angular momentum barrier

suppression (2L+1) = 7
```

How Can We Estimate pp Cross Sections @ PANDA ?

Cross Section Estimates from detailed balance

Table: Peak cross sections $\sigma_{[p\overline{p}\to R]}^{\text{peak}}$ for $p\overline{p} \to R$ assuming Breit Wigner distributions with constant small width Γ_R .

Res. R	J	Mass m [MeV]	$\mathcal{B}(R \to p\overline{p})$	$\sigma^{\text{peak}}_{[p\overline{p}\to R]} \pm \text{err. fr. } \mathcal{B}(R \to p\overline{p}) \pm \text{err. fr. } m_R$
$J/\psi(1S)$	1	3096.916 ± 0.011	$(2.17 \pm 0.07) \cdot 10^{-3}$	$5.25 \pm 0.17 \pm 0.00 \ \mu b$
$\psi(2S)$	1	3686.109 ^{+0.012}	$(2.76 \pm 0.12) \cdot 10^{-4}$	$402 \pm 18 \pm 4\mathrm{nb}$
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.41 \pm 0.17) \cdot 10^{-3}$	$1.29 \pm 0.16 \pm 0.00 \ \mu b$
$\eta_c(1S)$	0	2981.0 ± 1.1	$(1.32 \pm 0.19) \cdot 10^{-3}$	$1.21 \pm 0.17 \pm 0.00 \mu b$
$\eta_c(2S)$	0	3638.9 ± 1.3	$(1.85 \pm 1.26) \cdot 10^{-4}$	$93 \pm 63 \pm 0$ nb
$\eta_c(2S)$	0	3638.9 ± 1.3	$(3.12 \pm 1.65) \cdot 10^{-4}$	< 157 ± 83 ± 0 nb (95% CL)
$\chi_{c0}(1P)$	0	3414.75 ± 0.31	$(2.23 \pm 0.13) \cdot 10^{-4}$	$134.1 \pm 7.8 \pm 0 \text{ nb}$
$h_c(1P)$	1	3525.41 ± 0.16	$(8.95 \pm 5.21) \cdot 10^{-4}$	$1.47 \pm 0.86 \pm 0 \ \mu b$
$h_c(1P)$	1	3525.41 ± 0.16	$(1.68 \pm 0.05) \cdot 10^{-3}$	< 2776 ± 87 ± 0 nb (95% CL)
X(3872)	1	3871.68 ± 0.17	$(5.31 \pm 0.00) \cdot 10^{-4}$	$< 68.0 \pm 4.0 \pm 0.0 \text{ nb} (95\% \text{ CL})$
X(3915)	?	3917.5 ± 2.7	$(27 \pm 10) \cdot 10^{-3}$	not isolated

from PDG from LHCb, arXiv:1303.7133 [hep-ex] from combination of both (product branching fractions)

Check of cross section, derived from detailed balance (blue line) with direct measurement of J/ ψ , ψ ' E760, Phys. Rev. D47(1993)772 (data points)

Martin J. Galuska (PANDA Collaboration, JLU Giessen)

BACKGROUND DPM (Dual Parton Model)

A. Capella, U. Sukhatme, C.-I. Tan, J. Tran Thanh Van Phys. Rept. 236, 225 (1994)
A. B. Kaidalov, P. E. Volkovitsky
Z. Phys. C63, 517 (1994)
V. V. Uzhinsky and A. S. Galoyan, hep-ph/0212369

Martin J. Galuska (PANDA Collaboration, JLU Giessen)

Motivation: the physics case

Understanding confinement Origin of hadron masses

through the study of

- Hadron spectroscopy
 - Search for gluonic excitations
 - Charmonium spectroscopy
 - D meson spectroscopy
 - Baryon spectroscopy
 - QDC dynamics
- Nucleon structure
 - Parton distributions
 - Time-like form factors of the proton
 - Transition distribution amplitudes
 - Generalized distribution amplitudes
- Hadrons in matter
- Hypernuclei

Charmonium(-like) (Exotic) States at PANDA

Facility for Antiproton and Ion Research

3000 Physicists 50 Countries

Scientific pillars of FAIR:

- 1. Atomic, Plasma Physics and Applications APPA
- 2. Compressed Baryonic Matter CBM
- 3. NUclear STructure, Astrophysics and Reactors NUSTAR
- 4. antiProtons ANnihilation at DArmstadt PANDA

Courtesy of E. Prencipe, ICHEP 2014

Charmonium(-like) (Exotic) States at PANDA

A bird view of the site

12 June 2014

Total area $> 200\ 000\ m^2$ Area buildings $= 98\ 000\ m^2$ Usable area $= 135\ 000\ m^2$

Magnet system

Target system: TDR approved for cluster jet Prototype under construction

Courtesy of E. Prencipe, ICHEP 2014

Charmonium(-like) (Exotic) States at PANDA

Courtesy of E. Prencipe, ICHEP 2014

Charmonium(-like) (Exotic) States at PANDA

PANDA is a fixed target detector

O High boost β_{cms} ≥ 0.8
 O Many tracks and photons in fwd acceptance (θ ≤30°) (high p_z, E_y)

- High background from hadronic reactions
 - \odot Expected S/B ~ 10⁻⁶
 - S (signal) and B (background) have same signature
 - Hardware trigger not possible
 - Self-triggered electronics
 - Free streaming data
 - O 20 MHz interaction rate
 - Complete real-time event reconstruction

