--------------4D4E279D4119
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
Alan Clayton Coleman wrote:
>
> Hi ROOTers,
> I am new to both C++ and ROOT. I have what hopefully are some
> simple questions and would request any assistance or direction. (i.e.,
> I can think of some painful ways to do the following)
>
> 1) Is there a simple way to find the value of the max and min bin
> with entries (bin # or "x"-value?) in a histogram?
Hi Alan,
You can find the maximum and minimum Y value of an histogram
via TH1::GetMaximum and TH1::GetMinimum.
We do not have afunction returning the bin number corresponding
to the maximum or minimum. This could be added. Meanwhile,
you must loop yourself on the bins via TH1::GetBinContent.
Concerning your following questions, you will find in attachment
an example of a macro fitting a background + signal.
It also shows how to use a global variable.
Rene Brun
>
> 2) It would be desirable to perform fits over the data in an iterative
> fashion, i.e., making differient cuts on a couple of the ntuple
> parameters and then fitting. The fitting consists of a peak and
> background function. For single fits there are no problems as
> values required by the background function can be entered by hand.
> But, for multiple fits for different cut values it is not understood
> how these changing values can also be passed to the fitting functions.
> Is there a way to use global variables? In addition is there a way to
> define constant global values? I.e., for the latter it would be
> nice not to define the mass of a proton in every function.
>
> 3) Initially the background function used gives only the shape (based
> on fitting parameters), addition of an amplitude fit parameter in
> general distorts the meaning of amplitude. Is there an easy way to
> scale the background shape to 1 and then multiply the amplitude fit
> parameter?
>
> Apologies for my ignorance and a great deal of thanks for any
> assistance.
>
> --
> Alan Coleman
> colemana@cebaf.gov
> W&M Small Hall Rm 307
> (757) 221-3543
> TJNAF
> Bldg 16 Rm 14
> (757) 269-7541
> http://physics.wm.edu/~coleman/home.html
> "Lehrer sind Menschen, die uns helfen probleme zu loesen, die wir ohne sie nicht haetten."
> "Teachers are people who help us to solve problems that we would not have without them."
>
>
--------------4D4E279D4119
Content-Type: text/plain; charset=us-ascii; name="backsig.C"
Content-Disposition: inline; filename="backsig.C"
Content-Transfer-Encoding: 7bit
// example of macro fitting background + signal
// -STEP 1: Generates theoretical function
// -STEP 2: Generates an histogram by sampling the function
// -STEP 3: estimates background parameters
// -STEP 4: estimates signal parameters
// -STEP 5: Combined fit of background + signal
//
Double_t kTH = -0.5;
Double_t Background(Double_t *x, Double_t *par)
// The background function
{
Double_t arg = 0;
if (par[2]) arg = (x[0] - par[1])/par[2];
Double_t val = par[0]*TMath::Exp(kTH*arg*arg)*x[0]*x[0];
return val;
}
Double_t Signal(Double_t *x, Double_t *par)
// The signal function: a gaussian
{
Double_t arg = 0;
if (par[2]) arg = (x[0] - par[1])/par[2];
Double_t sig = par[0]*TMath::Exp(-0.5*arg*arg);
return sig;
}
Double_t Total(Double_t *x, Double_t *par)
// Combined background + signal
{
Double_t tot = Background(x,par) + Signal(x,&par[3]);
return tot;
}
void backsig()
{
// the control function
//STEP 1: Generates theoretical function
Int_t npar = 6;
Double_t params[6] = {100,3,1,350,6,0.5};
TF1 *theory = new TF1("theory",Total,0,10,npar);
theory->SetParameters(params);
//STEP 2: Generates an histogram by sampling the theory function
TH1F *Data = new TH1F("Data","Data sampled from theory",100,0,10);
Data->FillRandom("theory",10000);
//STEP 3: Estimates background parameters using a gaussian
Data->Fit("gaus","q0");
//STEP 4: Subtract estimated background to original data
// Creates a temporary histogram and fit a gaussian
TH1F *htemp = (TH1F*)Data->Clone();
htemp->Reset();
TF1 *eback = Data->GetFunction("gaus");
for (Int_t bin=1;bin<=100;bin++) {
Float_t x = Data->GetBinCenter(bin);
Double_t fval = eback->Eval(x);
Double_t diff = TMath::Abs(fval - Data->GetBinContent(bin));
htemp->Fill(x,diff);
}
htemp->Fit("gaus","q0");
TF1 *esig = htemp->GetFunction("gaus");
//STEP 5: Fit background + signal
eback->GetParameters(¶ms[0]);
esig->GetParameters(¶ms[3]);
Data->Fit("theory");
}
--------------4D4E279D4119--