

Lattice QCD review of charmonium

E .V. Luschevskaya

21.09.2014

Introduction

Proper treatment of near-threshold states in lattice QCD is important since most exotic states lie near open charm threshold.

- 1 X(3872) near $D^0 D^{*0}$ threshold;
- **2** Z_c^+ (3900) was discovered in $J/\psi\pi^+$ inv. mass by BESII and confirmed by Belle and CLEOc, it has quark structure $\bar{c}c\bar{d}u$ and also lies near DD^* threshold;
- 3 $Z^+(4430)$ and $Z_c^+(4020)$, $Z_c^+(4025)$ have $\bar{c}c\bar{d}u$ quark structure and lie near D^*D_1 and D^*D^* thresholds respectively;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

4 the first lattice studies were done for X(3872) and $Z_c^+(3900)$.

Technical details

• **The variational method** The energy levels *E_n* are extracted from the decay of two-point Green functions in Euclidean time,

$$C_{ij}(t) = \langle O_i(t) O_j^{\dagger}(t) \rangle = \sum_{n \ge 1} v_i^n v_j^{n*} e^{-E_n t}, \quad v_i^n = \langle 0 | \hat{O}_i | n \rangle$$

Interpolating operator \hat{O}_{I}^{\dagger} creates states of an isospin *I*, charm number, a given momentum and $J^{P(C)}$ quantum numbers. Need to solve the symmetrized eigenvalue problem

$$C^{-1}(t_0)C(t)u^n(t,t_0) = \lambda^n(t,t_0)u^n(t,t_0)$$

$$\lambda^n(\mathit{t}, \mathit{t}_0) \propto \mathbf{e}^{-(\mathit{t}-\mathit{t}_0)\mathcal{E}_n}[\mathbf{1} + \mathcal{O}(\mathbf{e}^{-(\mathit{t}-\mathit{t}_0) riangle \mathcal{E}_n})]$$

B. Blossier, R.Sommer et al. [ALPHA Collab.], arXiv: 0902.1265 [hep-lat] The effective energy levels or $\vec{p} = 0$ masses are obtained from the eigenvalues

$$m_{n,\text{eff}}^{t_0}(t+a/2) = a^{-1} rac{\lambda^n(t,t_0)}{\lambda^n(t+a,t_0)}$$

・ロト・日本・日本・日本・日本

States well below open charm threshold

$$m=\sqrt{E^2-P^2}$$

If P = 0 then m = E.

Perform extrapolations: $L \rightarrow \infty$, $a \rightarrow 0$, $m_q \rightarrow m_{phys}$ (lattice collab.: HPQCD, FNAL/MILC, χ QCD).

"Single-meson" treatment of excited states

- **1** using only quark-antiquark interpolating fields $O \sim \bar{q}q$ for mesons;
- 2 assuming that all energy levels correspond to one particle states;
- 3 that the mass of the state equals the measured energy level m = E.

These assumptions are too strong for the resonances, which are not asymptotic states. This approach also ignores the effect of the threshold and near-threshold states.

cc spectrum extracted by the Hadron Spectrum Collaboration

 $N_f = 2 + 1$ dynamical quarks (degen. *u* and *d* + *s* quark), anisotropic lattices $16^3 \times 128$ and $24^3 \times 128$ with $m_{\pi} \approx 400$ MeV, $L \simeq 1.9$ fm and 2.9 fm, $a_s \sim 0.12$ fm, $a_s/a_t \sim 3.5$.(Corr. with exp.: $\psi(2S)$, $\psi(3770)$, $\psi(4160)$, Y(4260).)

D. Mohler, S. Prelovsek and R. Woloshin, Phys. Rev. D87, 034501 (2013) $V = 16^3 \times 32$, $a \simeq 0.124$ fm, $m_{\pi} \approx 266$ MeV.

QCDSF

Numerical setup

Action

Charm and light valence quarks and $n_F = 2$ sea quarks, the nonperturbatively improved Sheikholeslami-Wohlert (clover) Fermion action and Wilson gauge action (provided QCDSF collab.) The charm m_c is not sufficiently heavy, so the same action (relativistic) for both the charm quark and for the light sea/valence quarks is used.

Simulation parameters

ID	β	κ	volume	$m_{ m PS}/ m GeV$	a∕fm	<i>L</i> /fm	$\kappa_{ m charm}$	$N_{\rm conf}$
1	5.20	0.13420	$16^{3} \times 32$	1.007(2)	0.1145	1.83	0.1163	100
2	5.29	0.13620	$24^3 imes 48$	0.400(1)	0.0770	1.84	0.1245	130
3	5.29	0.13632	$24^3 imes 48$	0.280(1)	0.0767	1.84	0.1244	100

The only free parameter is the m_c , the authors set it by tuning $m_{1\bar{S}} = \frac{1}{4}(m_{\eta c} + 3m_{J/\Psi})$ to exp.value 3067.8 ± 0.4 MeV. **a** is from $r_0/a(\beta, k)$, k is the mass parameter, β - lattice coupling, $r_0 \approx 0.457$ fm - Zommer parameter.

◆ロト ◆御 と ◆臣 と ◆臣 と 「臣 」 釣べで

Rigorous treatment of near-threshold state X(3872)

$X(3872 \rightarrow J/\psi \omega, X(3872) \rightarrow J/\psi \rho$

Consider also discrete scattering levels DD^* and $J/\psi V$, where $V = \omega$ for I = 0 and $V = \omega$ for I = 1.

The eigenstates are also the s-wave scaterring states $D(\vec{p})D^*(-\vec{p})$ and $J/\psi(\vec{p})V(-\vec{p})$ with discrete momenta \vec{p} .

In the absence of interaction $p = p^{n,i} = 2\pi |n|/L$ and the scattering levels appear at

 $E^{n,i} = E_1(p^{n,i}) + E_2(p^{n,i})$

In the presence of interaction the scattering levels $E = E_1(p) + E_2(p)$ are shifted with respect to $E^{n,i}$ since momentum outside the interaction region is defferent from $p^{n,i}$.

This energy shift provides rigorous information on the DD interaction.* Bound states and resonances lead to levels in addition to the scattering levels.

X(3872) from DD^* scattering on the lattice

The interpolatinf fields O_i have to couple well to $\bar{c}c$ as well as the scattering states to study the system with $J^{PC} = 1^{++}$, $\vec{p} = 0$ and l = 0 or l = 1.

 $O^{\bar{c}c} = \bar{c}\hat{M}_i c(0)$ (only for l = 0)

$$\begin{split} O_1^{DD^*} &= [\bar{c}\gamma_5 u(0)\bar{u}\gamma_i c(0) - \bar{c}\gamma_i u(0)\bar{u}\gamma_5 c(0)] + f_l \{u \to d\} \\ O_2^{DD^*} &= [\bar{c}\gamma_5 \gamma_t u(0)\bar{u}\gamma_i \gamma_t c(0) - \bar{c}\gamma_i \gamma_t u(0)\bar{u}\gamma_5 \gamma_t c(0)] + f_l \{u \to d\} \\ O_3^{DD^*} &= \sum_{e_k = \pm e_{x,y,z}} [\bar{c}\gamma_5 u(e_k)\bar{u}\gamma_i c(-e_k) - \bar{c}\gamma_i u(e_k)\bar{u}\gamma_5 c(-e_k)] + f_l \{u \to d\} \\ O_1^{J/\psi V} &= \epsilon_{ijk}\bar{c}\gamma_j c(0)[\bar{u}\gamma_k u(0) + f_l\bar{d}\gamma_k d(0)] \\ O_1^{J/\psi V} &= \epsilon_{ijk}\bar{c}\gamma_j \gamma_t c(0)[\bar{u}\gamma_k \gamma_t u(0) + f_l\bar{d}\gamma_k \gamma_t d(0)] \end{split}$$

where $f_l = 1$ and $V = \omega$ for l = 0, while $f_l = -1$ and $V = \rho$ for l = 1. Polarization i = x is used.

◆□ > ◆□ > ◆三 > ◆三 > ● のへで

 $\bar{q}\gamma_{i}q$ $\bar{q}\gamma_{t}\gamma_{i}q$ $\bar{q}\nabla_{i}q$ $\bar{q}\nabla_{i}q$ $\bar{q}\nabla_{i}\gamma_{5}\nabla_{i}q$ $\bar{q}\nabla_{i}\gamma_{i}\nabla_{i}q$ $\bar{q}\nabla_{i}\gamma_{t}\gamma_{i}\nabla_{i}q$ $\bar{q}\nabla_{i}\gamma_{t}\gamma_{i}\nabla_{i}q$ $\bar{q}\Delta_{i}\gamma_{i}\Delta_{i}q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

X(3872) from DD^* scattering on the lattice

$$C^{-1}(t_0)C(t)u^{n}(t,t_0) = \lambda^{n}(t,t_0)u^{n}(t,t_0) \frac{\langle O_i|n\rangle}{\langle O_j|n\rangle} = \frac{\sum_k C_{ik}(t)u_k^{n}(t)}{\sum_{k'} C_{ik'}(t)u_{k'}^{n}(t)}$$

Simulations: $N_f = 2$ dynamical quarks, $m_u = m_d$, $m_{val} = m_{dyn}$, $m_{\pi} = 266(4)$ MeV, a = 0.1239(13) fm, the lattice volume $V = 16^3 \times 32$, the small spatial size $L \simeq 2$ fm is the main drawback of our simulation because X(3872) is larger in size.

The present study also needs: $am_D = 0.9801(10)$, $am_D^* = 1.0629(13)$, $am_{\eta_c} = 1.47392(31)$, $am_{J/\psi} = 1.54171(43)$, $am_{\rho} = 0.5107(40)$ and $m_{\omega} = m_{\rho}$.

・ロト・西ト・モート 前・ 日・

▲ 臣 ▶ 臣 • • ○ • ●

Results

for I = 1

The channel cannot contain pure \overline{cc} .

The lowest free levels are $D(0)D^*(0)$, $J/\psi(0)\rho(0)$ and $D(1)D^*(-1)$, their overlaps are largest with $O_{1,2}^{DD^*}$, $O_{1,2}^{J/\psi\rho}$ and $O_{3}^{DD^*}$

Their energies are almost equal to non-interacting energies \implies interaction in

I = 1 is small. No extra states in addition to the scattering levels in I = 1.

Possible reasons: $m_u = m_d$ in these lattice simulations or not sufficient set of scattering interpolating operators.

for I = 0

The first possibility: the stars corresponds to a weakly bound state X(3872) slightly below the DD^* threshold and the circles correspond to the scattering state $D(0)D^*(0)$ which is significantly shifted up due to a large negative DD^* scattering length $a_0^{DD^*} = \lim_{p\to 0} tan(p)/p$

The second possibility: the opposite case to the first one, attr. int. with $a_0 > 0$. It is ruled out because the analysis of lattice data leads to

Search for exotic states

Search for $Z_c^+(3900)$ exotic state

BESIII, Belle: $Z_c^{\pm}(3900)$, CLEO: $Z_c^{0}(3900)$, $m(Z_c^{+}) = 3899.0 \pm 3.6 \pm 4.9$ MeV, suggest quarks structure $\bar{c}c\bar{d}u$.

 $Z_c^+ \rightarrow J/\psi \pi^+,$

J and P quantum numbers are experimentally unknown I = 1 and $C = C_{J/\psi}C_{\pi^0} = -1$

The search on the lattice by simulating the channel with $J^{PC} = 1^{+-}$ and I = 1 was performed with $N_f = 2$ of dynamical quarks with $m_u = m_d$.

Parameters of simulations: $V = 16^3 \times 32$, a = 0.1239(13) fm, L = 1.98 fm, $m_{\pi} = 266(4)$ MeV.

No candidate was found. Possible reasons: Z_c^+ (3900) has another quantum numbers or the set of interpolation operators are not diverse enough.

Search for exotic states

Search for $Z_c^+(3900)$ exotic state

Six interpolators with $J^{PC} = 1^{+-}$, I = 1 and total momentum p = 0. PS: $I_3 = 0$ and Z_c^0 , $m_u = m_d$ so the same operators we have for the charged mesons.

$$\begin{split} O_{1}^{DD^{*}} &= [\bar{c}\gamma_{5}u(\rho=0)\bar{u}\gamma_{i}c(\rho=0) + \bar{c}\gamma_{i}u(\rho=0)\bar{u}\gamma_{5}c(\rho=0)] - \{u \to d\} \\ O_{2}^{DD^{*}} &= [\bar{c}\gamma_{5}\gamma_{t}u(\rho=0)\bar{u}\gamma_{i}\gamma_{t}c(\rho=0) + \bar{c}\gamma_{i}\gamma_{t}u(\rho=0)\bar{u}\gamma_{5}\gamma_{t}c(\rho=0)] - \{u \to d\} \\ O_{3}^{DD^{*}} &= \sum_{p=\pm 2\pi/L,e_{x,y,z}} [\bar{c}\gamma_{5}u(\rho)\bar{u}\gamma_{i}c(-\rho) + \bar{c}\gamma_{i}u(\rho)\bar{u}\gamma_{5}c(-\rho)] - \{u \to d\} \\ O_{1}^{J/\psi\pi} &= \bar{c}\gamma_{i}c(\rho=0)[\bar{u}\gamma_{5}u(\rho=0) - \{u \to d\}] \\ O_{2}^{J/\psi\pi} &= \bar{c}\gamma_{i}\gamma_{t}c(\rho=0)[\bar{u}\gamma_{5}\gamma_{t}u(\rho=0) - \{u \to d\}] \\ O_{3}^{J/\psi\pi} &= \sum_{p=\pm 2\pi/L,e_{x,y,z}} \bar{c}\gamma_{i}c(\rho)[\bar{u}\gamma_{5}u(-\rho) - \{u \to d\}] \end{split}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Search for exotic states

X(4140)

The phase shift for s-wave and p-wave scattering of $J\psi\phi$. No resonant structure was found, ignoring of $\bar{s}s$ annihilation contribution. For the one near-threshold bound state the phase shift have to start at $\delta(p=0) = \pi$ and fall down to $\delta(p \to \infty) = 0$. Conclusions

Conclusions

The single meson treatment of states are not suited for excited states and resonances which are not asymptotic states of lattice correlators

- 2 X(3872) is found below the DD* threshold $\delta m = -11 \pm 7$ MeV
- 3 No candidate for $Z_c^+(3900)$ in J^{+-} and I = 1 channel
- 4 No X(4140) resonant structure