Деятельность группы ИЯФ СО РАН в ПАНДА

А.Е. Блинов, Дубна, 22.09.2014 г.

- 1. Введение в Forward RICH,
- 2. Измерения эффективности регистрации фотонов и радиационной стойкости прототипа ФАРИЧ на основе кремниевых цифровых фотоумножителей фирмы Филипс,
- 3. Возможность изучения экзотических заряженных состояний чармония в эксперименте ПАНДА с дейтериевой мишенью.

Forward RICH for PANDA

Идея ФАРИЧ (Focusing Aerogel RICH)

Повышение точности измерения черенковского угла по сравнению с одним слоем достигается за счет уменьшения

T.lijima et al., NIM A548 (2005) 383 A.Yu.Barnyakov et al., NIM A553 (2005) 70

Baseline design based on focusing aerogel, flat mirrors and MaPMTs

•8x8 anode pixels of 6mm

•Relatively cheap (≈€1600 /

•Robust Long lifetime •2-layer aerogel n1=1.050, n2=1.047 (no gas) •Flat mirrors only

- MaPMT readout
- •MC simulated PID performance:
 - π/K up to P = 10 GeV/c
 - μ/π up to P = 2 GeV/c

Detection&readout options for PANDA Forward RICH

Digital Photon Counter (DPC) is a digital SiPM produced by Philips Digital Photon Counting

Tile

DPC3200-22-44 – 3200 cells/pixel **DPC6400-22-44** – 6396 cells/pixel **FPGA:**

Clock distribution

Beam test of FARICH-PDPC prototype CERN PS/T10, June 2012

X-X_{center}, mm

Philips DPC array: 6x6 tiles=48x48 pixels=20x20cm²
Cooled down to -40°C to reduce dark count rate (DCR)
4-layer aerogel with a focusing length of 200mm

π/Κ: 7.6σ @ 4 GeV/*c* **μ/π: 4.5**σ @ 1 GeV/*c*

Philips DPC-FARICH: timing resolution and number of photoelectrons

Hit time w.r.t. fitted event time, ns

 $\sigma_{narrow} = 48ps$ for single photons

<Nph.el.>= 12 (accounted for optical crosstalks) 1.7 times lower than expected

R&D of Digital Photon Counter (DPC)

- Promising option for photon detection despite of high DCR and a need for cooling (down to -40°C for present DPC design).
- Previous beam tests and preliminary measurements have shown PDE deficiency: about 1.7-1.9 times lesser than Philips claimed value. We have to address this issue by measuring PDE of the FARICH prototype (6x6 DPC tiles) and understanding differences between our DPC calibration procedure and Philips one.
- Possible radiation aging/damage:
 - Beam tests.
 - MC simulation to evaluate expected dose for the PANDA Forward RICH.

DPC PDE measurement (1)

Wide-angle light source calibration by scanning setup

Custom-made scanning setup

DPC PDE measurement (2)

Use wide-angle light source to illuminate DPC array

FARICH setup

DPC array (6x6 tiles)

DPC PDE measurement (3)

Relative intensity map by scanning setup (5 mm step)

Count rate map for DPC array 2400x3072 cells, T~15°C

T variation during measurements results in the vertical lines with different count rate.

DPC radiation hardness test at COSY (FZ Julich), August 1-4, 2014

Box with 2 DPC tiles

•Protons with 800 MeV/c momentum Maximum fluence ~4·10¹¹ p/cm2 accumulated in 9 steps •Tiles were at -18°C •DCR scan of cells was done in beam stops •Total dose is measured by ionization chamber provided by COSY team •Beam profile is measured by MWPC ~ 1 m upstream of the detector

Initial dark count rate (DCR) distribution of cells

DCR distribution of cells for several total doses

DPC irradiation (2)

Dark count rate map after final dose

 Beam profile at the tile position is not precisely determined due to multiple scattering of protons in ~1m of air

• We had to use DCR data to determine beam profile

Mean cell DCR in the central part of the tile vs fluence Fit: $y = 7.65 \cdot 10^{-5} \cdot x^{0.910} - 5470$

DPC radiation hardness

DCR vs p fluence measured.
Observed single event effects: tile and TEK FPGA failures: bit upsets in the inhibit on-chip memory. Can be recovered by FW reload. Special runs were acquired to evaluate frequency of such events, to be analyzed.
Also we did several temperature scans to compare DCR vs temperature behavior before and after irradiation. To be analyzed.

•We should evaluate total fluence expected in PANDA Forward RICH for the experiment lifetime. MC simulation is in preparation.

Observation of Zc(3900) at BESIII

PRL110, 252001 (2013)

 $e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^- J/\psi$

- M = 3899.0±3.6±4.9 MeV/c²
- Γ = 46±10±20 MeV

$$e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^0 \pi^0 J/\psi$$

 Γ = 29.6±8.2 MeV

• M = 3894.8±2.3 MeV/c²

(100)
$$\frac{1}{200}$$
 $\frac{4230 \text{ MeV}}{100}$ $\frac{4230 \text{ MeV}}{100}$ $\frac{1}{300}$ \frac

•

Observation of Zc(4020) in $e^+e^- \rightarrow \pi \pi h_c$

No significant: $Z_c(3900) (2.1\sigma)$ M = 4022.9±0.8±2.7 M_eV/c² Γ = 7.9±2.7±2.6 M_eV

$$\frac{\sigma(e^+e^- \to \pi^0 Z_c(4020)^0 \to \pi^0 \pi^0 h_c)}{\sigma(e^+e^- \to \pi^\pm Z_c(4020)^\mp \to \pi^\pm \pi^\mp h_c)}$$

 $M = 4023.6 \pm 2.3 \pm 3.9 M_{e} V/c^{2}$

\sqrt{s} (GeV	$(T) R_{\pi Z_c(4020)}$
4.230	$0.79 \pm 0.30 \pm 0.26$
4.260	$1.18 \pm 0.46 \pm 0.37$
4.360	$0.99 \pm 0.47 \pm 0.32$

Observation of Zc(3885) and Z_c(4025)

the Zc states at BESIII

2) Width (MeV)	Width (MeV)	Mass (MeV/c²)	Channel
4.9 46±10±20 Close to D D*) 29.6±8.2 (Prel.) threshold (3875 MeV)	$46 \pm 10 \pm 20$ 29.6±8.2 (Prel.)	$3899.0 \pm 3.6 \pm 4.9$ 3894.8 ± 2.3 (Prel.)	πJ/ψ
4.2 24.8±3.3±11.0	$24.8 \pm 3.3 \pm 11.0$	$3883.9 \pm 1.5 \pm 4.2$	(D D*)±
1σ difference	1σ difference	2σ difference	
$\begin{array}{c} 2.7 \\ \overline{D}_{rel.} \end{array} 7.9 \pm 2.7 \pm 2.6 \\ (4017 \text{ MoV}) \end{array} Close to D^* \overline{D}^* \text{ threshold} \\ \end{array}$	$7.9 \pm 2.7 \pm 2.6$	4022.9±0.8±2.7 4022.9±0.8±2.7(Prel.)	π_{h_c}
3.7 24.8±5.6±7.7	$24.8\!\pm\!5.6\!\pm\!7.7$	$4026.3 \pm 2.6 \pm 3.7$	(D* D*)±
2σ difference	2σ difference	1σ difference	

- At least 4-quarks; Near threshold;
- Isospin: I=1, hint of a new spectroscopy ?
- Whether they are two states need further understanding (couple channel analysis? quantum number determination? interference?)

Наблюдение Z_b(10610) и Z_b(10650) на BELLE

Figure 1: Invariant mass spectra of the (a) $\Upsilon(1S)\pi^{\pm}$, (b) $\Upsilon(2S)\pi^{\pm}$, (c) $\Upsilon(3S)\pi^{\pm}$, (d) $h_b(1P)\pi^{\pm}$ and (e) $h_b(2P)\pi^{\pm}$ combinations.

Figure 3: Missing mass of the pairs formed from the reconstructed *B* candidate and charged pion (a) and missing mass of the charged pions for the $B\pi$ combinations for (b) $\Upsilon(5S) \rightarrow B\bar{B}^*\pi$ and (c) $\Upsilon(5S) \rightarrow B^*\bar{B}^*\pi$ candidate events.

Параметры Zb(10610) и Zb(10650) $M_1 = (10607.4 \pm 2.0) \text{ MeV}/c^2, \qquad M_2 = (10652.2 \pm 1.5) \text{ MeV}/c^2,$ $\Gamma_1 = (18.4 \pm 2.4) \text{ MeV}, \qquad \Gamma_2 = (11.5 \pm 2.2) \text{ MeV}.$

Table 1: Branching fractions (\mathscr{B}) of $Z_b(10610)$ and $Z_b(10650)$ assuming that the observed so far channels saturate their decays.

Channel	\mathscr{B} of $Z_b(10610)$, %	\mathscr{B} of $Z_b(10650)$, %
$\Upsilon(1S)\pi^+$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2S)\pi^+$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3S)\pi^+$	2.15 ± 0.56	1.64 ± 0.40
$h_b(1P)\pi^+$	2.81 ± 1.10	7.43 ± 2.70
$h_b(2P)\pi^+$	2.15 ± 0.56	14.8 ± 6.22
$B^+\bar{B}^{*0}+\bar{B}^0B^{*+}$	86.0 ± 3.6	
$B^{*+}\bar{B}^{*0}$	_	73.4 ± 7.0

 $B^0 \rightarrow J/\psi \ K^- \ \pi^+$

- 4D amplitude analysis
- 10 K* resonances, Z⁺(4430), Z⁺(new)
- 6.6σ significance
- M = 4196 +31 +17 MeV/C²
 -29 -13
- G = 370 ± 70 +70 MeV
- JP=1+

Exclusion levels of other spin-parity hypothesis

Model	0-	1-	2^{-}	2^{+}
Without K^* (1680)	8.5σ	8.5σ	8.0σ	9.0σ
Without $K_0^*(1950)$	8.4σ	8.8 <i>o</i>	7.3σ	8.9σ
LASS	6.1σ	7.4σ	4.4σ	7.0σ
Free masses and widths	7.6σ	7.9σ	5.9σ	7.8σ
Free r	7.4σ	8.7 0	7.5σ	9.2σ
Nonresonant ampl. (S)	7.6σ	8.1σ	7.2σ	8.5σ
Nonresonant ampl. (S,P)	7.4σ	8.1σ	7.2σ	8.4σ
Nonresonant ampl. (S,P,D)	7.2σ	8.1σ	7.1σ	8.4σ

Z⁺(4200)

Preliminary results

$J^{P}=1^{+}$, other J^{P} are excluded

TABLE III.	The	fit	fractions	and	significances	of	all	reso-
nances in the	e defa	ult	model $(J$	$^{P} =$	1 ⁺).			

Resonance	Fit fraction	Significance (local)
$K_{0}^{*}(800)$	$(7.1^{+0.7}_{-0.5})\%$	22.5σ
$K^{*}(892)$	$(69.0^{+0.6}_{-0.5})\%$	166.4σ
$K^{*}(1410)$	$(0.3^{+0.2}_{-0.1})\%$	4.1σ
$K_0^*(1430)$	$(5.9^{+0.6}_{-0.4})\%$	22.0σ
$K_{2}^{*}(1430)$	$(6.3^{+0.3}_{-0.4})\%$	23.5σ
$K^{*}(1680)$	$(0.3^{+0.2}_{-0.1})\%$	2.7σ
$K_{3}^{*}(1780)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ
$K_0^*(1950)$	$(0.1^{+0.1}_{-0.1})\%$	1.2σ
$K_{2}^{*}(1980)$	$(0.4^{+0.1}_{-0.1})\%$	5.3σ
$K_{4}^{*}(2045)$	$(0.2^{+0.1}_{-0.1})\%$	3.8σ
$Z_c(4430)^+$	$(0.5^{+0.4}_{-0.1})\%$	5.1σ
$Z_{c}(4200)^{+}$	$(1.9^{+0.7}_{-0.5})\%$	8.2 <i>σ</i>

Поиск экзотических заряженных состояний чармония в эксперименте ПАНДА с дейтериевой мишенью

Достоинства: резонансное рождение заряженных чармониев в антипротон-нейтронных столкновениях и, возможно, бОльшая, чем у обычного чармония, константа связи таких состояний с N-N каналом. • Недостаток: низкая (~100 МэВ) монохроматичность столкновений вследствие фермиевского движения

нуклонов в дейтерии.

• Точность реконструкции массы Z_c по продуктам распада в канале J/psi + pi оценивается в 10-20 МэВ.

- Точность можно значительно повысить при реконструкции массы отдачи к протону дейтерия (P~P_F~70 МэВ/с), который поглощается в вак. камере.
- Такое измерение можно (?) провести, если поместить внутрь ВК один слой кремниевого вершинного детектора, который для мягких протонов будет работать как калориметр полного поглощения.

Заключение

1. Ведется работа по выбору оптимальной конструкции ФАРИЧ,

2. Ведется работа с прототипом из 6x6 DPC фирмы Филипс для оценки возможности его использования в ФАРИЧ:

а. измеряется эффективность регистрации фотонов,

б. измеряется радиационная стойкость,

в. начато моделирование для оценки получаемой в эксперименте дозы.

 Отмечена возможность резонансного рождения экзотических заряженных состояний чармония в эксперименте ПАНДА с дейтериевой мишенью, что, в частности, позволит измерить константу связи с каналом нуклон-антинуклон,
 Отмечена возможность значительного улучшения разрешения по массе таких резонансов при реконструкции протона отдачи слоем кремниевого вершинного детектора, помещенным внутрь вакуумной камеры.
 Для обоснования целесообразности такой модификации эксперимента ПАНДА нужно моделирование, опыта которого недостает.

ЗАИНТЕРЕСОВАВШИЕСЯ ЛИЦА ПРИГЛАШАЮТСЯ К СОТРУДНИЧЕСТВУ!